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(4) Introduction 

Previous studies have found that there is a strong correlation between mammographic 
breast density and the risk of breast cancer.  Mammographic breast density has been used by 
researchers in many studies to estimate breast cancer risk of epidemiological factors, monitor the 
effects of preventive treatments such as tamoxifen or dietary interventions, monitor the breast 
cancer risk of hormone replacement therapy, and investigate factors affecting mammographic 
sensitivity and cancer prognosis.  However, most studies used Breast Imaging Reporting and 
Data System (BI-RADS) density rating as a measure of mammographic breast density, which 
contributes large inter- and intraobserver variations and may reduce the sensitivity of the 
analysis.  

 
The goal of this proposed project is to develop a fully automated technique to assist 

radiologists in estimating mammographic breast density.  We hypothesize that the computerized 
technique can accurately and efficiently segment the dense area on digitized or digital 
mammograms, thereby eliminating inter- and intra-observer variations.  The dense area as a 
percentage of total breast area thus estimated will be more consistent and reproducible than 
radiologists' subjective BI-RADS rating.  To accomplish this goal, we will (1) collect a large 
database of mammograms, including digitized film mammograms and digital mammograms, for 
training and testing the dense area segmentation program; (2) evaluate the correlation between 
the radiologists' breast density classification based on BI-RADS lexicon and the percent breast 
dense area; (3) study the correlation of percent breast dense area between different views of the 
same breast and between the same view of the two breasts; and (4) investigate the correlation 
between the percent breast dense area estimated from mammograms and the volumetric dense 
breast tissue estimated from a data set of magnetic resonance (MR) breast images.  These 
comparisons will provide important information regarding the consistency of the BI-RADS 
rating with the measured percent breast dense area, the appropriate measure of % dense area 
from different mammographic views, and the usefulness of using the percent breast dense area 
on mammograms as an indicator of volumetric breast tissue density. 

 
It is expected that this project will produce a fully automated and effective tool for 

analysis of mammographic breast density, which can be applied to routinely acquired 
mammograms without special calibrations.  This will facilitate studies of various factors 
associated with breast cancer risk and mammographic sensitivity, and monitoring the effects of 
interventional or preventive strategies.  The image analysis tool will therefore contribute to the 
understanding of the relationship of density to breast cancer risk, detection, prognosis, and to the 
prevention and treatment of breast cancer. 
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(5) Body 
 
 This is the final report of the project.  We have described in detail the results of our 
studies in the past annual progress reports.  The investigations conducted in this project are 
summarized in the following.  
 
(A) Collection of a Database of Full Field Digital Mammograms (DMs) and Digitized 

Mammograms (DFM) 
 

With IRB approval, we have collected a database of full field direct digital mammograms 
(DM) and a database of screen-film mammograms (DFM).  The database of DMs contained 
about 290 cases with over 580 pairs of DMs.  The database of DFMs included about 380 cases 
with over 760 DFMs. The data sets were used for the development of the breast density analysis 
tools for DMs and DFMs.   
 
(B) Automated Breast Density Analysis System for Digitized Mammograms 
 

We developed an automated image analysis tool Mammographic Density ESTimator 
(MDEST), to assist radiologists in estimating breast density in terms of percent dense area on 
mammograms. MDEST performs dynamic range compression, breast boundary tracking, 
pectoral muscle segmentation for the MLO view, automatic thresholding based on gray level 
histogram analysis, and calculates the percent dense area on a mammogram.  In our study, we 
found that the correlation between the computer-estimated percent dense area and radiologists’ 
manual segmentation was 0.94 and 0.91, respectively, for CC and MLO views, with a mean bias 
of less than 2%. These results indicated that the automated image analysis tool can be an 
efficient and reproducible method for breast density segmentation.  (Publications J1, J2, J3, P1, 
P2, A1, A2, A3, A6, A8) 
 
(C)  Correlation between Percent Dense Area and Percent Volumetric Fibroglandular 

Tissue 
 

We performed a comparison between fibroglandular tissue volume segmented from 3-
dimensional MR images and the percent dense area estimated on corresponding DFMs. The 
correlation of manually segmented percent dense area of the CC and MLO views by radiologists 
with the percent volumetric fibroglandular tissue on MR images was found to be 0.91 and 0.91, 
respectively. The correlation of automated MDEST segmented percent dense area of the CC and 
MLO views with the percent volumetric fibroglandular tissue on MR images was found to be 
0.91 and 0.89, respectively. The mean differences between the percent dense area and the MR 
percent volumetric density range from 3% to 6%. The high correlation indicated that the percent 
dense area on mammograms can be used as a surrogate for monitoring breast density changes. 
(Publications J2, P1, A1, A3) 
 
(D)  Correlation between Breast Density estimated on Digitized Screen-Film 

Mammograms and Full Field Digital Mammograms 
 
We studied the correlation between the percent dense area estimated on DFMs and DMs.  

Pairs of two-view DFM and DM from 99 patients were used.  All mammograms were manually 
segmented by 5 experienced breast radiologists using a graphical user interface developed in this 
project.  The mean difference in the segmented density between DFMs and DMs was about 3.5% 



 Page 6  

and the mean ratio was about 1.30, indicating that the mammographic density was about 30% 
higher, on average, on the DFMs.  The difference in the mammographic density may be 
attributed to the harder beam quality used and the digital image processing applied to the DMs. 
The lower density may improve the mammographic sensitivity for lesion detection on dense 
breasts.  However, for patients with DFMs and DMs taken over time, comparison of serial 
mammograms for breast density changes will be problematic. (Publications A4) 

 
(E) Automated Breast Density Analysis System for Digital Mammograms 
 

The MDEST system was originally developed using DFMs. To adapt the system to DMs, 
we incorporated an Expectation-Maximization (EM) algorithm to extract gray level features 
from the histogram. A rule-based classifier was trained to estimate a gray level threshold for 
segmenting the dense area from the breast region adaptively. The performance of the MDEST 
system for DMs was improved after the incorporation of the EM estimation and re-training. The 
correlation between the computer-estimated percent dense area and the radiologists’ manual 
segmentation improved from 0.85 and 0.87 to 0.94 and 0.92, respectively, for CC and MLO 
views.  The root-mean-square (RMS) errors improved from 7.3% and 5.7% to 4.2 and 4.4%, 
respectively, for CC and MLO views.  (Publications P2, A5, A6, A8) 
 
(F) Breast Segmentation: Breast Boundary Detection and Pectoral Muscle Trimming 
 

Breast density estimation depends strongly on the accuracy of breast boundary 
segmentation and, for the MLO view, pectoral muscle segmentation. We developed an improved 
breast boundary tracking method using Sobel edge detection in combination with multiple edge 
thresholding to generate contour images and active contour for segmentation. For the detection 
of pectoral boundary, we developed a method that included gradient-based directional filtering, 
gradient-based texture analysis to generate an orientation image, mean shift smoothing, and 
ridge-tracking.  For a data set of 118 MLO view mammograms, the new method identified 
99.2% of the pectoral muscles. (Publications P3, A7) 

 
(G) Comparison of Mammographic Density by MDEST Radiologists’ Estimates and 

BI-RADS Categories 
 

The fully-automated MDEST computer program was used to estimate breast density on 
digitized mammograms from 65 women, ages 24-89 (mean = 53).  Five breast radiologists 
prospectively assigned qualitative BI-RADS density categories and visually estimated percent 
density of 260 mammograms.  Qualitative BI-RADS assessments were compared to new 
quantitative BI-RADS standards.  The reference standard density for this study was established 
by allowing the 5 radiologists to manipulate the MDEST gray level threshold, which segmented 
mammograms into dense and non-dense areas.  It was found that there was close correlation 
between the reference standard and radiologist-estimated density (correlation =.90-.95) and 
MDEST density (correlation = 0.89).  MDEST had tighter agreement with the reference 
standard, with an average overestimate of 1% (-15% to +18%). MDEST correlated better with 
percent density than qualitative BI-RADS categories.  There was large overlap and range of 
percent density in qualitative BI-RADS categories 2 through 4.  Qualitative BI-RADS categories 
correlated poorly with the new quantitative BI-RADS categories.  6% (16/260) of views were 
erroneously classified by MDEST.  This study indicated that MDEST compared favorably to 
radiologist estimates of percent density, and is more reproducible than radiologist estimates 
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using qualitative BI-RADS density categories.  Qualitative and quantitative BI-RADS density 
assessments differed markedly. (Publication J3) 
 
(6) Key Research Accomplishments 
 
• Collected over 670 cases digitized film mammograms and digital mammograms for 

development of the automated density segmentation program (Task 1). 

• Developed an automated image analysis tool Mammographic Density ESTimator (MDEST) 
for estimation of the percentage of breast dense area on mammograms. (Task 2)  

• Evaluated the segmentation accuracy by comparison with radiologists’ manual segmentation 
and found that the correlation between the computer-estimated percent dense area and 
radiologists’ manual segmentation was 0.94 and 0.91, respectively, for CC and MLO views, 
with a mean bias of less than 2%. (Task 2) 

• Evaluated correlation between mammographic density and BI-RADS density ratings and 
found that there was a close correlation between the reference standard and radiologist-
estimated density (R=.90-.95) and MDEST density (R = 0.89).  MDEST correlated better 
with percent density than qualitative BI-RADS categories.  (Task 2) 

• Evaluated correlation between mammographic density and volumetric density measurement 
with MR breast images and found that the correlation of automated MDEST segmented 
percent dense area of the CC and MLO views with the percent volumetric fibroglandular 
tissue on MR images was 0.91 and 0.89, respectively. The mean differences between the 
percent dense area and the MR percent volumetric density ranged from 3% to 6%. (Task 3) 

• Evaluated the correlation between mamomgraphic density estimated on DFMs and DMs and 
found that the mean difference in the segmented density between DFMs and DMs was about 
3.5% and the mean ratio was about 1.30, indicating that the mammographic density was 
about 30% higher, on average, on the DFMs.  (Tasks 2 and 4) 

• Adapted the MDEST density segmentation system to digital mammograms successfully and 
the system now can be applied to both modalities (Task 4) 

• Compared automated density segmentation results on DMs with radiologists’ manual 
segmentation and found that the correlation between the computer-estimated percent dense 
area and the radiologists’ manual segmentation was 0.94 and 0.92, respectively, for CC and 
MLO views.  The root-mean-square (RMS) errors were 4.2 and 4.4%, respectively, for CC 
and MLO views (Task 4).  

• Developed a breast boundary detection method and a pectoral muscle trimming method to 
improve the accuracy of breast area estimation for calculation of percent dense area. For a 
data set of 118 MLO view mammograms, the pectoral muscle trimming method identified 
99.2% of the pectoral muscles (Task 2 and Task 4). 
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(7)  Reportable Outcomes 
 
 As a result of the support by the USAMRMC BCRP grant, we have developed an 
automated breast density analysis system for both DMs and DFMs.  We have also developed 
graphical user interfaces for interactive thresholding of breast density on mammograms by 
radiologists efficiently.  The results of these investigations have been presented in international 
conferences or published in peer-reviewed journals.  The publications from this project are listed 
below.  Many of these have been reported in the annual reports. 
 
Journal Articles: 
 
J1. Zhou C, Chan HP, Petrick N, Helvie MA, Goodsitt MM, Sahiner B, Hadjiiski LM.  

Computerized image analysis: Estimation of breast density on mammograms.  Medical 
Physics  2001; 28: 1056-1069. 

 
J2. Wei J, Chan HP, Helvie MA, Roubidoux MA, Sahiner B, Hadjiiski L, Zhou C, 

Paquerault S, Chenevert T, Goodsitt MM. Correlation between Mammographic Density 
and Volumetric Fibroglandular Tissue Estimated on Breast MR Images.  Medical Physics 
2004; 31: 933-942. 

 
J3. Martin KE, Helvie MA, Zhou C, Roubidoux MA, Bailey JE, Paramagul C, Blane CE, 

Klein K, Sonnad S, Chan HP. Mammographic density measured by an automatic 
computer-aided quantitative method:  Comparison with radiologists’ estimates and BI-
RADS categories.  Radiology 2006; 240: 656-665. 

 
 
Conference Proceeding: 
 
P1. Chan HP, Hadjiiski LM, Roubidoux MA, Helvie MA, Paquerault S, Sahiner B, 

Chenevert T, Goodsitt MM.  Breast density estimation: correlation of mammographic 
density and MR volumetric density. In: Digital Mammography IWDM 2002: 6th 
International Workshop on Digital Mammography.  Ed. Peitgen HO. (Springer, Berlin) 
2003: 281-284. 

 
P2. Zhou C, Chan HP, Wei J, Helvie MA, Roubidoux MA, Paramagul C, Nees A, Hadjiiski 

LM, Sahiner B. Performance evaluation of an automated breast density estimation system 
for digital mammograms and digitized film mammograms. In: Digital Mammography 
IWDM 2004: 7th International Workshop on Digital Mammography.  Ed. Pisano E. 425-
429. 

 
P3. Zhou C, Hadjiiski LM, Paramagul C, Sahiner B, Chan HP, Wei J. Computerized pectoral 

muscle identification on MLO-view mammograms for CAD applications. Proc SPIE 
5747; 2005: 852-857. 

 
 
Conference Abstracts and Presentations: 
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A1. Chan HP, Hadjiiski LM, Roubidoux MA, Helvie MA, Paquerault S, Sahiner B, 
Chenevert T, Goodsitt MM.  Breast density estimation: correlation of mammographic 
density and MR volumetric density. Poster presentation at the 6th International 
Workshop on Digital Mammography.  IWDM-2002.  Bremen, Germany.  June 22-25, 
2002. 

 
A2. Chan HP, Helvie MA, Wei J, Hadjiiski LM, Zhou C, Goodsitt MM, Sahiner B, 

Roubidoux MA. Automated analysis of mammographic breast density for breast cancer 
risk estimation. Presented at the Era of Hope Meeting, U. S. Army Medical Research and 
Materiel Command, Department of Defense, Breast Cancer Research Program, Orlando, 
Florida, September 25-28, 2002. 

 
A3. Wei J, Chan HP, Helvie MA, Hadjiiski LM, Sahiner B, Roubidoux MA, Zhou C, 

Paquerault S, Chenevert T, Goodsitt MM. Breast density estimation on mammograms 
and MR images: A tool for assessment of breast cancer risk. Presentation at the 88th 
Scientific Assembly and Annual Meeting of the Radiological Society of North America, 
Chicago, IL, December 1-6, 2002. Radiology 2002; 225(P): 600.  

 
A4. Chan HP, Wei, J, Zhou C, Helvie MA, Roubidoux MA, Bailey J, Paramagul C, Nees A, 

Hadjiiski LM, Sahiner B. Comparison of mammographic density estimated on digital 
mammograms and screen-film mammograms. Presentation at the 89th Scientific 
Assembly and Annual Meeting of the Radiological Society of North America, Chicago, 
IL, November 30-December 5, 2003. RSNA Program 2003; 424.  

 
A5. Zhou C, Hadjiiski LM, Sahiner B, Chan HP, Helvie MA, Wei, J. Computerized 

mammographic breast density estimation: Expectation-Maximization estimation and 
neural network classification of breast density. Presented at the 89th Scientific Assembly 
and Annual Meeting of the Radiological Society of North America, Chicago, IL, 
November 30-December 5, 2003. RSNA Program 2003; 389. 

 
A6. Zhou C, Chan HP, Wei J, Helvie MA, Roubidoux MA, Paramagul C, Nees A, Hadjiiski 

LM, Sahiner B. Performance evaluation of an automated breast density estimation system 
for digital mammograms and digitized film mammograms. Presented at the 7th 
International Workshop on Digital Mammography.  IWDM-2004.  Durham, North 
Carolina.  June 18-21, 2004. 

 
A7. Zhou C, Hadjiiski LM, Paramagul C, Sahiner B, Chan HP, Wei J. Computerized pectoral 

muscle identification on MLO-view mammograms for CAD applications. Poster 
presentation at the SPIE International Symposium on Medical Imaging, San Diego, CA, 
February 12-17, 2005. 

 
A8. Zhou C, Chan HP, Helvie MA, Wei J, Ge J, Hadjiiski LM, Sahiner B, Computerized 

mammographic breast density estimation on full field digital mammogram and digitized 
film mammogram.  Presentation at the 91st Scientific Assembly and Annual Meeting of 
the Radiological Society of North America, Chicago, IL. November 27-December 2, 
2005. RSNA Program 2005; 271. 
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(8) Conclusions 
 

 We have developed an automated mammographic density segmentation system, referred 
to as Mammographic Density ESTimator (MDEST), for both DMs and DFMs.  Our studies 
showed that the automated MDEST system can provide percent dense area estimates that are 
highly correlated with radiologists’ interactive thresholding results and the percent volumetric 
fibroglandular tissue estimates from MR breast images.  The quantitative estimates are superior 
to the radiologists’ qualitative BI-RADS density assessment. The MDEST system can provide a 
consistent and reproducible estimation of percent dense area on routine clinical mammograms. 
This will facilitate studies of various factors associated with breast cancer risk and 
mammographic sensitivity, and monitoring the effects of interventional or preventive strategies. 
The image analysis tool will therefore contribute to the understanding of the relationship of 
density to breast cancer risk, detection, prognosis, and to the prevention and treatment of breast 
cancers. 
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Computerized image analysis: Estimation of breast density
on mammograms
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An automated image analysis tool is being developed for the estimation of mammographic breast
density. This tool may be useful for risk estimation or for monitoring breast density change in
prevention or intervention programs. In this preliminary study, a data set of 4-view mammograms
from 65 patients was used to evaluate our approach. Breast density analysis was performed on the
digitized mammograms in three stages. First, the breast region was segmented from the surrounding
background by an automated breast boundary-tracking algorithm. Second, an adaptive dynamic
range compression technique was applied to the breast image to reduce the range of the gray level
distribution in the low frequency background and to enhance the differences in the characteristic
features of the gray level histogram for breasts of different densities. Third, rule-based classification
was used to classify the breast images into four classes according to the characteristic features of
their gray level histogram. For each image, a gray level threshold was automatically determined to
segment the dense tissue from the breast region. The area of segmented dense tissue as a percentage
of the breast area was then estimated. To evaluate the performance of the algorithm, the computer
segmentation results were compared to manual segmentation with interactive thresholding by five
radiologists. A ‘‘true’’ percent dense area for each mammogram was obtained by averaging the
manually segmented areas of the radiologists. We found that the histograms of 6%~8 CC and 8
MLO views! of the breast regions were misclassified by the computer, resulting in poor segmen-
tation of the dense region. For the images with correct classification, the correlation between the
computer-estimated percent dense area and the ‘‘truth’’ was 0.94 and 0.91, respectively, for CC and
MLO views, with a mean bias of less than 2%. The mean biases of the five radiologists’ visual
estimates for the same images ranged from 0.1% to 11%. The results demonstrate the feasibility of
estimating mammographic breast density using computer vision techniques and its potential to
improve the accuracy and reproducibility of breast density estimation in comparison with the
subjective visual assessment by radiologists. ©2001 American Association of Physicists in Medi-
cine. @DOI: 10.1118/1.1376640#

Key words: mammography, computer-aided diagnosis, breast density, breast cancer risk, image
segmentation, thresholding
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I. INTRODUCTION

Breast cancer is one of the leading causes for cancer mo
ity among women.1 One in every eight women will develo
breast cancer at some point in their lives. The most succ
ful method for the early detection of breast cancer is scre
ing mammography. Currently, mammograms are analy
visually by radiologists. Because of the subjective nature
visual analysis, qualitative responses may vary from radio
gist to radiologist. Therefore, a computerized method
analyzing mammographic features would be useful a
supplement to the radiologist’s assessment. Previous
search efforts in computer-aided diagnosis~CAD! for breast
cancer detection mainly concentrated on detection and c
acterization of masses and microcalcifications on mam
grams by using computer vision techniques. It has been d
onstrated that an effective CAD algorithm can improve
diagnostic accuracy of breast cancer characterization
mammograms, which, in turn, may reduce unnecessary b
sies. In this work, we are studying the feasibility of develo
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ing a CAD system for an analysis of breast density on ma
mograms. Studies have shown that there is a strong pos
correlation between breast parenchymal density on mam
grams and breast cancer risk.2–9 The relative risk is estimated
to be about 4 to 6 times higher for women whose mamm
grams have parenchymal densities over 60% of the br
area, as compared to women with less than 5% of paren
mal densities.

An important difference between breast density as a
factor and most other risk factors is the fact that breast tis
density can be changed by dietary or hormon
interventions.6,10,11Although there is no direct evidence th
changes in mammographic breast densities will lead
changes in breast cancer risk, the strong correlation betw
breast density and breast cancer risk has prompted rese
ers to use mammographic density as an indicator for mo
toring the effects of intervention as well as for studyin
breast cancer etiology.6,11–13

Different methods have been used for the evaluation
1056…Õ1056Õ14Õ$18.00 © 2001 Am. Assoc. Phys. Med.



je
ar

P
in
n
t

te
e
d
t

to
c
pa
d
th
o
h
Th
d
at
th

to
tu

ig

ris
e
d

e
x
o

o-
iv
u

ive
s
e
x-
-
o

si
te
ea
re
m
s
re
e

ch
at
tio
n

he

nts
sis

udal

on-
iol-

ta
asts
ed
se-

ro-
o-
phy
rds
r

p-
.
ge
to

st
c-

0

ing
ted
fea-
tion

per-
ast

ue
und-
by
ray
k-
und
m

ints
xels
the
nd-

oint
he
ely
wn-
ew
dge
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mammographic breast density. Earlier studies used a sub
tive visual assessment of the breast parenchyma prim
based on the four patterns described by Wolfe2 ~N1 is com-
prised entirely of fat; P1 has up to 25% nodular densities;
has over 25% nodular mammographic densities; DY conta
extensive regions of homogeneous mammographic de
ties!. The subjectivity in classifying the mammographic pa
terns introduced large variability in the risk estimation. La
studies used more quantitative estimates, such as planim
to measure the dense area in the breast manually outline
radiologists on mammograms.3,7 These studies indicate tha
the percentage~%! of mammographic densities relative
the breast area can predict the breast cancer risk more a
rately than a qualitative assessment of mammographic
terns. Warneret al.15 conducted a meta-analysis of the stu
ies published between 1976 and 1990 to investigate
effect of different methods of classification on estimates
cancer risk. They found that the mammographic parenc
mal pattern does correlate with the breast cancer risk.
magnitude of the risk varies according to the method use
evaluate the mammograms. With the quantitative estim
of mammographic density, the difference in risk between
highest and the lowest risk category is substantial and
greater than the risks associated with most other risk fac
for breast cancer. More recent studies used fractal tex
and the shape of the gray level histogram14 to quantify the
parenchymal pattern or used interactive thresholding on d
tized mammograms to segment the dense area.11,15 It was
reported that the thresholding method provided a higher
value than the texture measure or the histogram shap16

Other researchers have attempted to calculate a breast
sity index to model the radiologists’ perception.17

In clinical practice, radiologists routinely estimate th
breast density on mammograms by using the BI-RADS le
con as recommended by the American College
Radiology18 in order to provide a reference for mamm
graphic sensitivity. Because of the lack of a quantitat
method for breast density estimation, researchers often
the BI-RADS rating for monitoring responses to prevent
or interventional treatment and the associated change
breast cancer risk.19 We have found that there is a larg
interobserver variability in the BI-RADS ratings among e
perienced mammographers.20,21 An automated and quantita
tive estimation, as investigated in this study, will provide n
only an efficient means to measure mammographic den
but also a reproducible estimate that will reduce the in
and intraobserver variability of mammographic density m
surements. This image analysis tool will therefore allow
searchers to study more definitively the relationship of ma
mographic density to breast cancer risk, detection, progno
and mammographic sensitivity, and to better monitor the
sponse of a patient to preventive or interventional treatm
of breast cancers.

In this paper, we will describe the image processing te
niques used in our automated breast density segment
algorithm. The performance of the computer segmenta
was evaluated by a comparison with the average segme
Medical Physics, Vol. 28, No. 6, June 2001
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tion by 5 radiologists using interactive thresholding in t
same data set.

II. MATERIALS AND METHODS

A. Database

A data set consisting of 260 mammograms of 65 patie
was used for the development of the histogram analy
method in this study. Each case contains the cranioca
~CC! view and the mediolateral oblique~MLO! view of both
breasts of the patient. The first 50 mammograms were c
secutive screening cases from the patient files in the Rad
ogy Department at the University of Michigan. After da
analysis, it was found that there were very few dense bre
in the initial data set. An additional 15 cases visually judg
by radiologists to be dense breasts were then randomly
lected and mixed with the initial set. The images were p
cessed individually without knowing their BI-RADS categ
ries. The mammograms were acquired with mammogra
systems approved by the Mammography Quality Standa
Act ~MQSA! and were digitized with a LUMISYS 85 lase
film scanner with a pixel size of 50mm350mm and 4096
gray levels. The gray levels are linearly proportional to o
tical densities~O.D.! from 0.1 to greater than 3 O.D. units
The nominal O.D. range of the scanner is 0–4 with lar
pixel values in the digitized mammograms corresponding
low O.D. The full resolution mammograms were fir
smoothed with a 16316 box filter and subsampled by a fa
tor of 16, resulting in 800mm3800mm images of approxi-
mately 2253300 pixels in size for small films and 30
3375 pixels for large films.

B. Breast segmentation and image enhancement

The breast image is first segmented from the surround
image background by boundary detection. The detec
boundary separated the breast from other background
tures such as the directly exposed area, patient identifica
information, and lead markers. The density analysis was
formed only within the breast region. An automated bre
boundary tracking technique developed previously22,23 was
modified to improve its performance. Briefly, the techniq
used a gradient-based method to search for the breast bo
ary. The background of the image was estimated initially
searching for the largest background peak from the g
level histogram of the image. After subtracting this bac
ground level from the breast region, a simple edge was fo
by a line-by-line gradient analysis from the top to the botto
of the image. The criterion used in detecting the edge po
was the steepness of the gradient of four adjacent pi
along the horizontal direction. The steeper the gradient,
greater the likelihood that an edge existed at that correspo
ing image point. The simple edge served as a starting p
for a more accurate tracking algorithm that followed. T
tracking of the breast boundary started from approximat
the middle of the breast image and moved upward and do
ward along the boundary. The direction to search for a n
edge point was guided by the previous edge points. The e
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FIG. 1. ~a! A mammogram from our
image database;~b! the image super-
imposed with the detected breas
boundary and pectoral muscle bound
ary; ~c! the binary map of the seg-
mented breast region.
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location was again determined by searching for the ma
mum gradient along the gray level profile normal to t
tracking direction. Since the boundary tracking was guid
by the simple edge and the previously detected edge po
it could steer around the breast boundary and was less p
to diversion by noise and artifacts. The accuracy of
boundary tracking technique was evaluated in our previ
study23 by quantifying the root-mean-square differences
tween the detected and manually identified breast bou
aries. In the current study, the performance of the bound
tracking technique for this data set was determined by su
imposing the detected boundary on the breast image an
sually judged if the detected boundary coincided with
perceived breast boundary. The breast image and its bo
ary were displayed by appropriately adjusting the contr
and brightness. Incomplete, jagged and mistracked bou
aries were considered incorrect tracking.

The unexposed film area around the film edges was
tected automatically. After the breast boundary was foun
region growing algorithm was used to fill the enclosed bre
region. The result was a binary map that distinguished
breast region from the background areas. An example of
tracked breast boundary and the breast binary map is sh
in Figs. 1~a!–1~c!.

For the MLO view mammograms, an additional step h
to be performed for segmentation of the pectoral muscle.
initial edge in the pectoral region was found as the maxim
gradient point by a line-by-line gradient analysis from t
chest wall to the breast boundary. The false pectoral mu
edge points were discarded by an edge validation proc
First, a straight line was fitted to the initial edge points, a
the points that did not lie close to the fitted line were
moved. Second, the remaining edge points that were c
nected were identified by an 8-connectivity criterion. A
edge segment was removed if its direction was inconsis
with the pectoral edge direction relative to the breast ima
Finally, a second order curve was fitted to the remain
edge points to separate the pectoral muscle from the br
region. The pixels in the pectoral muscle region were
cluded from the histogram analysis and breast area calc
tion. The accuracy of the pectoral muscle detection was
judged visually in this study, similar to the method used
the breast boundary described above. Figure 1 shows
pectoral muscle trimming result for an MLO view mamm
gram.
Medical Physics, Vol. 28, No. 6, June 2001
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To facilitate histogram analysis, a dynamic range co
pression method was developed to reduce the gray l
range of the histograms. With our digitization, the gray le
els of the dense tissue are higher than those of the adi
tissue. Because of variations in exposure condition a
breast thickness near the periphery, the gray level distr
tion corresponding to the breast parenchymal pattern is
perimposed on a low frequency background that mainly r
resents the global variations in exposure. This low freque
background distorts the characteristic features of the hi
gram due to the density pattern. To reduce the distortion
adaptive dynamic range compression technique was app
to the breast image. For a given breast image,F(x,y), which
contains low frequency background and higher freque
breast tissue structures, a smoothed image,FB(x,y), was
obtained by applying a large-scale box filter toF(x,y) to
remove the high frequency components while retaining
low frequency components. The imageFB(x,y) was then
compressed by a scale factork:

FC~x,y!5kFB~x,y!. ~1!

To reconstruct the high frequency components,FC(x,y),
was subtracted from a constant gray levelG, and added to
the original image,F(x,y):

FD~x,y!5G2FC~x,y!, ~2!

FE~x,y!5FD~x,y!1F~x,y!. ~3!

Histogram analysis was applied to the dynamic-ran
compressed imageFE(x,y). Figure 2 shows an example o
the resulting images and gray level histograms obtained f
this procedure, where the size of box filter is 35335, the
scale factork is 0.5, and the constant gray levelG is the
maximum gray level of the compressed imageFC(x,y). The
values of these parameters were chosen experimentally
balance between reducing the dynamic range and preser
the image features in the compressed image.

C. Breast density segmentation and estimation

A rule-based threshold technique was developed to s
ment the dense areas from the breast background. The h
gram of the breast region on the dynamic-range-compres
mammogram was generated and smoothed. The histog
of these images in the database were analyzed to formu
an automatic thresholding routine. The histograms w
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FIG. 2. ~a! A typical mammogram from our image database;~b! the low frequency imageFB(x,y) obtained by an 35335 box filter;~c! the compressed image
FC(x,y); ~d! the inverted imageFD(x,y); ~e! the enhanced imageFE(x,y); ~f! the gray level histogram within the breast region of the original imageF(x,y);
and ~g! the gray level histogram of the breast region of the enhanced imageFE(x,y).
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grouped into four classes based on the characteristic sh
of their histograms. It was observed that the grouping co
sponded approximately to the four BI-RADS breast dens
ratings: Class I corresponded to breasts of almost entirely
Class II corresponded to scattered fibroglandular densi
Class III corresponded to heterogeneously dense and C
IV corresponded to extremely dense breasts. Example
typical histograms for these four classes are shown in Fig
The histograms seemed to follow two basic patterns. In
pattern, there was only one dominant peak, which rep
sented most of the breast structures in the breast regio
the other pattern, in addition to a large peak in the histogr
there was one or two smaller peaks on the right or left side
the large peak. In a majority of the cases, the smaller p
was distinguishable from the large one when the rand
fluctuation on the histogram was smoothed.
Medical Physics, Vol. 28, No. 6, June 2001
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1. Peak detection and feature description

The gray level histogram within the breast area was g
erated and normalized, and passed through an averaging
dow to smooth out the random fluctuations. We estima
the window size to be in the range of 30 to 50 gray levels
experimentally evaluating the histogram shapes and den
segmentation at different window sizes. Too small a wind
size cannot smooth out the fluctuation and too large a w
dow size will blur the useful features. A window size of 3
was used in this study. The second derivative of every po
on the histogram curve was computed. An example of
histogram and its second derivative curve are shown in F
4. The zero crossing locations were detected by scanning
the positive-to-negative and negative-to-positive changes
the latter curve. If the second derivative was negative
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FIG. 3. Four typical classes of histograms and the setting of gray level interval@g1 ,g2# for the threshold calculation.
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tween two zero crossing points, it indicated that a peak
isted between these two points on the histogram. Norma
as shown in Fig. 4, a peak included the peak pointP0 and
two valley pointsP1 andP2 located on the two sides of th
peak point. The peak pointP0 was determined by searchin
for the maximum histogram value between the zero cross
pointsZ2 andZ3 , and theP1 andP2 points were obtained by
searching for the point with minimum histogram value b
tween zero crossing pointsZ1 ,Z2 andZ3 ,Z4 , respectively.

The following peak features can be defined by peak po
P0 and valley pointsP1 andP2 :

Energy: E5
1

A (
i 5P1

P2

f ~ i !* f ~ i !, ~4!

left-side energy: EL5
1

A (
i 5P1

P0

f ~ i !* f ~ i !, ~5!

FIG. 4. The gray level histogram~solid curve! and the second derivative
~dot! curve.P0 is the peak point,P1 andP2 are the valley points of the pea
on the two sides of the peak pointP0 . PointsZ1 , Z2 , Z3 andZ4 are zero
crossing points on the second derivative curve, which are used for sear
the pointsP0 , P1 andP2 .
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right-side energy: ER5
1

A (
i 5P0

P2

f ~ i !* f ~ i !, ~6!

likelihood: L5E/E8, ~7!

where f (•) is the histogram,A is the total energy of the
entire histogram andA5S i 50

N f ( i )* f ( i ),N is the maximum
gray level of the histogram.E8 is the energy calculated b
approximating the histogram in the interval@P1 ,P2# using
two straight lines,P1P0 andP0P2 . The energyE of the peak
is used to compare the sizes of the peaks on the histog
higher energy means bigger size of the peak.EL andER split
the energyE into two parts from the peak point for calcula
ing the ratio of the energy in these two parts. The likeliho
L describes how close the real peak is to the triangle re
sented by the three pointsP0 , P1 andP2 .

2. Rule-based histogram classification

A rule-based histogram classifier was developed to c
sify the gray level histogram of the breast area into fo
classes. As shown in Fig. 3, a typical Class I breast is alm
entirely fat, it has a single narrow peak on the histogra
Class II has scattered fibroglandular densities, it has
peaks, other than the tail part on the left, on the histogra
with the smaller peak on the right of the bigger one. Class
is heterogeneously dense, it also has two peaks, but
smaller peak is on the left of the bigger one. Class IV
extremely dense, which has a single dominant peak on
histogram, but it is wider compared with the peak in t
Class I histogram, and a second small peak sometimes
curs to the left of the main peak.

The classification is performed in two steps. In the fi
step, the computer determines whether there is only
single peak in the histogram. The biggest peak~main peak!

ing
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PM and its location are detected by comparing the energ
the peaks on the histogram. The single peak feature is ma
determined by the energyE under the main peak and th
featuresEL and ER . If the histogram is found to have
single-peak pattern, in general, a narrow peak correspond
very fatty breast~Class I!, and a wider peak corresponds
very dense breast~Class IV!. However, in some cases, th
histogram of these two classes is very similar, as discus
below ~Fig. 9!, and it is difficult to distinguish them by thei
gray level histogram distributions. Two additional image fe
tures were analyzed to classify very fatty and very de
breasts. One feature is the gray level standard deviation~Std!
in the entire breast area, defined as

Std5S 1

N (
xPMAP

(
yPMAP

„f ~x,y!2 f̄ ~x,y!…2D 1/2

, ~8!

where MAP is the breast binary map region,N is the pixel
numbers within MAP. Another feature is the number
single pixels and single pixel-size holes~NSH! counted in
the breast area of a segmented binary image using the
gest histogram peak pointPM as a threshold. For a very fatt
mammogram, the breast mainly consists of a fatty ba
ground with some fibrous structures and fibroglandular tis
scattered in the breast area. The NSH value was found t
larger ~greater than 50 pixels on average!, and Std smaller
~less than 500 on average!, compared with a mammogram o
a very dense breast.

In the second step, if the histogram is found to have m
than one peak, decision rules are used to decide if the se
major peak is on the left side or on the right side ofPM by
the featuresE, EL , ER andL, and the relative position of the
two peaks. If the second major peak is on the right, then
histogram is classified to be Class II; otherwise, it is clas
fied to be Class III.

3. Gray level thresholding

Gray level thresholding is essentially a pixel classificat
problem. Its objective is to classify the pixels of a give
image into two classes: one includes pixels with gray val
that are below or equal to a certain threshold; the other
cludes those with gray values above the threshold. Thre
olding is a popular tool for image segmentation, a variety
techniques have been proposed over the years. In our s
two threshold selection methods are used: one is the
criminant Analysis~DA! method24 and the other is the Maxi
mum Entropy Principle~MEP! based method.25 The DA
method assumes that the image gray levels can be class
into two classes by a threshold. To estimate the thresho
discriminant criterion based on the within-class variance
between-class variance is introduced. An optimal thresh
is selected by the discriminant criterion to maximize t
separability of the resultant classes in terms of gray lev
This method is well-suited for the cases where the gray le
histogram is bimodal. In an ideal situation, the histogram
a deep and sharp valley between the two peaks represe
objects and background, respectively, and the optimum
responds to the gray level at the bottom of this valley.
Medical Physics, Vol. 28, No. 6, June 2001
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more detailed description of the DA method can be found
Appendix A.

For the MEP method, the optimal threshold value is d
termined by maximizing thea posteriori entropy subject to
certain inequality constraints that are derived by means
special measures characterizing the uniformity and the sh
of the regions in the image. As is well-known,26 the maxi-
mum a posterioriprobability can serve as a criterion to s
lect a priori probability distributions when very little is
known about the probability distribution. Compared with t
DA method, MEP can provide a better thresholding resul
the gray level histogram does not have a bimodal distri
tion. A more detailed description of the MEP method can
found in Appendix B.

The gray level histograms of the mammograms in o
study are very complex, the histogram may be unimod
bimodal or multi-modal. It is difficult to select an appropria
threshold by one general threshold selection method. Th
fore, we combined both the DA and the MEP methods,
select a threshold according to the characteristic feature
the histogram that has been classified into one of the f
classes. Supposef (g) is the gray level histogram of the
breast area. LetT5Method(f (g)ug1,g,g2) represent the
threshold,T, that is selected by use of Method in the interv
@g1 ,g2# of the histogramf (g), where Method can be eithe
the DA or MEP method. The settings of the interval@g1 ,g2#
for the four classes are discussed below and shown in Fig

Class I: The histogram is unimodal so that the threshol
selected as

T5MEP~ f ~g!ug1,g,g2!,

where,g1 is the main peak point;g2 is the valley point on
the right side of main peak.

Class II: The histogram is not unimodal and the histogr
is classified as Class II; the threshold is selected by avera
two thresholds that are computed in two different intervals
the histogram by the DA method:

T15DA~ f ~g!ug.g1!,

T25DA~ f ~g!ug.g2!,

T5~T11T2!/2,

whereg1 is the valley on the left of the main peak;g2 is the
main peak point.

Class III: The histogram is not unimodal; there are tw
possibilities in the histogram distribution: there is a vall
between the main peak and its left side peak, as show
Fig. 3, or no obvious valley exists between the main pe
and its left side peak. In two different intervals of the hist
gram, two thresholds are computed as

T15DA~ f ~g!ug1,g,g2!,

T25DA~ f ~g!ug18,g,g2!,

whereg1 is the left valley point of the left-side peak (PLM)
of the main peak,g18 is the peak point ofPLM andg2 is right
valley point of the main peak. If there is an obvious valle
T5(T11T2)/2, otherwiseT5T1 .
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Class IV: Since the histogram is considered unimodal,
threshold is computed by the MEP method,T
5MEP„f (g)ug1,g,g2…, where,g1 is the left valley point
of the main peak;g2 is the main peak point.

D. Radiologists’ segmentation of dense breast tissue

In order to evaluate the accuracy of the computer segm
tation method, the computer segmentation results were c
pared to radiologists’ manual segmentation in the data se
65 patient cases. Details of the observer study for estima
of the breast density and statistical analysis of the res
were discussed elsewhere.27 Briefly, a graphical interface
was developed for displaying the mammograms and rec
ing the observer’s evaluation. The CC-view and MLO-vie
mammograms for a given breast were displayed side
side; a radiologist observer examined the mammograms
gave a BI-RADS rating and a visual estimation of the p
cent breast density with 10% increments. After the subjec
evaluation, each view was displayed sequentially, toge
with the histogram of the dynamic-range-compressed ima
The radiologist would interactively choose a threshold
moving a slider along the abscissas of the histogram p
The segmented binary image, displayed side-by-side with
mammogram, would change instantaneously when
threshold was changed. The radiologist could inspect if
segmented area corresponded to the dense area on the
mogram. Once the radiologist was satisfied with the segm
tation of the dense area, the gray level threshold and
percent dense area derived from this threshold were
corded. The display then moved to the next view of the sa
breast for evaluation. The mammograms of the other br
for the same patient would then be displayed and evalu
in the same way. The entire process was repeated for
patient until all patients in the data set were evaluated.

Five MQSA-approved radiologists participated in the e
periment. To familiarize the radiologists with the procedu
and to assist them in their visual estimation of the perc
breast density, we had them trained on a separate set o
patient cases prior to the evaluation of the actual data
During the training session, the computer displayed the p
cent breast dense area to the radiologist, which was obta
by the radiologist’s interactive thresholding of the imag
The radiologist could then compare the manually segmen
percentage with their visually assessed percent density
the image. This feedback helped ‘‘calibrate’’ the radiol
gists’ visual estimates of the percent dense breast area.
percent dense area obtained by interactive thresholding
not displayed during the actual study.

III. RESULTS

An example of a typical mammogram from each of t
four classes and its corresponding enhanced image, its h
gram, the selected threshold and the segmented image
shown in Figs. 5~a!–5~d!, respectively.

The average percent breast density obtained from ma
segmentation by the five trained radiologists for each ma
mogram was used as the ‘‘true standard’’ of the perc
Medical Physics, Vol. 28, No. 6, June 2001
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breast density for that mammogram. The breast region
segmented by the breast boundary tracking technique,
the pectoral muscle was trimmed for the MLO-view mam
mograms. The breast boundary was accurately tracked
92.3% ~240/260! of the mammograms, and the pector
muscle was correctly trimmed on 74.6%~97/130! of the
MLO views. The histograms of 6%~8 CC views and 8 MLO
views! of the breast regions did not exhibit the typical cha
acteristic features of the four classes and were misclass
by the computer, resulting in poor segmentation of the de
region.

Figure 6 shows a comparison of the percent breast den
visually estimated by radiologists against the true stand
for the 94% of the 260 mammograms that were classifi
correctly by the computer. Table I summarizes the comp
son of the radiologists’ visual estimates with the true st
dard. The ‘‘difference’’ between the estimated % breast d
sity and the true standard was calculated for each case,
the mean and the standard deviation of this difference o
all cases were estimated for each radiologist and show
the table. Therefore, the mean difference was the ave
bias of the estimated % breast density from the true stand
over all images in the data set. It can be seen that almos
radiologists had a positive bias, on average, when they v
ally estimated mammographic density, except for Radio
gist 5 who had a small negative average bias on the CC-v
reading. For a given radiologist, the over-estimation
creased as the breast density increased. Although the c
lation coefficients were high, ranging from 0.90 to 0.95, t
deviations from the diagonal line were systematic. The av
age bias from the true standard varied from less than 1%
11%, depending on the radiologist. The root-mean-squ
~RMS! errors of the five radiologists relative to the true sta
dard ranged from 7.5% to 16.3%.

Figure 7 shows the comparison of the percent breast d
sity between the computer segmentation and the true s
dard for the 94% of mammograms whose histograms w
considered to be correctly classified. There was a trend
over-estimation in the very fatty breasts. In the mediu
dense range, the variances from the true standard were
Some images had a large deviation from the diagonal l
indicating that the threshold was incorrectly determine
Table II summarizes the comparison between the comp
performance and the true standard. For the CC views w
correct histogram classification, the correlation between
computer-estimated percent dense area and the true pe
breast density was 0.94, and between the computer and
radiologists’ average visual estimate was 0.87~not plotted!.
These correlation coefficients were 0.91 and 0.82, resp
tively, for the MLO views with correct classification. Al
though the correlation coefficients of the computer segm
tation with the true standard were not better than those of
visual estimates, the average biases of the computer seg
tation from the true standard were less than 2%, which w
substantially less than those of visual estimates~Table I!.
This indicates that computerized segmentation is a good
ternative to manual segmentation although variances of
automated method will need to be further reduced. The R
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FIG. 5. Four classes of typical mammograms and corresponding enhanced and segmented image, histogram and threshold.
th
2%
is-
ro
e
th

M
an
f

a
lo
r C
b

nd
five
d
lo-

of
C

s
ed

S
olo-
errors of the computer segmentation were also less
those of the radiologists’ visual estimates, at 6.1% and 7.
respectively, for the CC view and MLO view, when the h
tograms were correctly classified. The biases and RMS er
for the different subsets of images are also shown in Tabl
It can be seen that correct histogram classification was
most important factor in reducing the biases and the R
errors. The contributions by breast boundary detection
pectoral muscle segmentation were minor, on average,
improving the estimation of the percent dense breast are

Figure 8 shows the comparison of the individual radio
gists’ manual segmentation against the true standard. Fo
views, the RMS difference in the percent breast density
Medical Physics, Vol. 28, No. 6, June 2001
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tween an individual radiologist’s manual segmentation a
the true standard varied from 2.9% to 5.9% among the
radiologists. For MLO views, the RMS difference varie
from 2.8% to 6.2%. The average biases of the five radio
gists ranged from22.8% to 2.2% for the CC views and from
23.1% to 3.0% for the MLO views. The maximum biases
the five radiologists varied from 4.4% to 22.6% for the C
views and from 5.2% to 23% for the MLO views.

The five radiologists provided BI-RADS density rating
for each breast. Although the BI-RADS ratings exhibit
large inter-observer variations,20 it is interesting to compare
the computer’s histogram classification with the BI-RAD
ratings. Since there were 260 images, each with 5 radi
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gists’ ratings, there were a total of 1300 rating compariso
The comparison of the computer and the radiologis
BI-RADS ratings is shown in Table III. It was found tha
87.4%of Class I classification have BI-RADS ratings 1 or
92.0% of Class II classifications have density ratings 2 o
83.4% of Class III classifications have density ratings 3 o

FIG. 6. A comparison of the percent breast density between five radiolog
visual estimates and the true standard. The dashed line represents the
regression of all data points on the plot. The MLO view is shown. The tr
for the CC view is similar.
Medical Physics, Vol. 28, No. 6, June 2001
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and 57.1% of Class IV classifications have density rating
More detailed analysis of the variability of radiologists’ B
RADS ratings was discussed by Martinet al.21

IV. DISCUSSION

Radiologists routinely estimate mammographic bre
density using the four BI-RADS categories. In studies th
require breast density estimation, radiologists’ visual e
mates of mammographic density were often used as the
sity measure. Our observer study indicates that interobse
variation between the BI-RADS ratings of five experienc
radiologists ranged from21 to 11. The subjectively esti-
mated percent dense area can deviate from the true stan
by as much as 40%, as shown in Fig. 6. These results i
cate the need to develop an objective method for the esti
tion of mammographic breast density in order to improve
accuracy and reproducibility of the estimation. A comput
ized image analysis method for mammographic breast d
sity estimation will be a useful tool for study of breast canc
risk factors and for monitoring the change of breast can
risk with preventive or interventional treatments.

In this study, we used the average of the percent bre
area obtained with interactive thresholding by five expe
enced radiologists as the true standard. The gray level thr
olding method used in this study could achieve a reason
segmentation of the dense areas on the mammogram bec
the image was preprocessed with dynamic range comp
sion. The image-based analysis of breast density will
provide the actual percentage of fibroglandular tissue in
breast volume. However, the previous studies that es

s’
ear

d

true
the true
TABLE I. A comparison of the radiologists’ visual estimate of mammographic breast density with the
standard. The ‘‘difference’’ was defined as the difference between the estimated % breast density and
standard for each case, and the mean and the standard deviation of this difference are tabulated.

Image subsets
No. of
images Radiologist Correlation

RMS
error

Mean
difference

Std. dev. of
difference

CC view:
All 130 Rad. 1 0.942 13.3% 6.9% 11.5%

Rad. 2 0.931 14.5% 9.8% 10.7%
Rad. 3 0.923 13.3% 6.3% 11.8%
Rad. 4 0.934 7.5% 2.9% 7.0%
Rad. 5 0.901 9.6% 21.4% 9.6%

Histogram 122 Rad. 1 0.946 13.7% 7.2% 11.3%
correctly Rad. 2 0.936 14.7% 10.3% 10.8%
classified Rad. 3 0.929 14.2% 6.7% 11.6%

Rad. 4 0.929 7.7% 3.1% 7.1%
Rad. 5 0.900 9.7% 21.3% 9.4%

MLO view:
All 130 Rad. 1 0.933 14.5% 8.3% 12.0%

Rad. 2 0.914 16.1% 11.2% 11.5%
Rad. 3 0.915 14.4% 7.7% 12.2%
Rad. 4 0.919 8.8% 4.3% 7.7%
Rad. 5 0.910 9.2% 0.1% 9.2%

Histogram 122 Rad. 1 0.932 15.0% 8.3% 12.0%
correctly Rad. 2 0.914 16.3% 10.9% 11.4%
classified Rad. 3 0.919 14.7% 7.8% 12.2%

Rad. 4 0.916 9.0% 4.3% 7.7%
Rad. 5 0.909 9.4% 0.3% 9.2%
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lished the correlation between breast density and breast
cer risk were all based on mammographic density. This
dicated that mammographic density is a sufficiently sensi
marker for breast cancer risk, although it may be less ac
rate than volumetric density. An actual measurement of
percentage of fibroglandular tissue volume in the breast,
example, by x-ray penetration with correction for scatter a
beam hardening, is difficult because it requires accu
x-ray sensitometry or phantom calibration for each ima
These requirements will limit its use to a few laborator
that have specialized equipment and expert physicists. M
netic resonance breast imaging can also provide volu
measurement of dense tissue but it is expensive and not
ily accessible. It can be expected that the estimation of m
mographic breast density by a computerized image ana
method will be a more practical and viable approach, es

FIG. 7. A comparison of the percent breast density between the comp
segmentation and the true standard. The dashed line represents the
regression of the data on the plot.~a! CC view, ~b! MLO view.
Medical Physics, Vol. 28, No. 6, June 2001
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cially when direct digital mammography becomes mo
widely used in the future.

Our preliminary study indicates that breast density e
mation can be performed automatically and accurately~Fig.
7!. Although the accuracy of our current algorithm still nee
to be improved, it can be seen that the computer segme
tion can provide an estimate of the percent breast den
with a very small bias~Table II!. More importantly, com-
puter segmentation will be more reproducible and consis
than visual estimates. This will improve the sensitivity
studies that depend on evaluation of the change in mam
graphic density over time or before and after a certain tre
ment.

In this study, we reduced the spatial resolution to a pi
size of 800mm3800mm for image processing. The sma
matrix size of the reduced images improves the compu
tional efficiency. The reduction in resolution has two ma
effects: reducing the image noise and blurring the deta
Since the significant dense tissue in the breast that con
utes to the parenchyma is relatively large compared to
mm, it is not expected that processing at this pixel size w
have a strong effect on the accuracy of the estimated per
breast density. Differences in the segmented area may o
mainly along the boundary of the dense tissue region, but
effect may be averaged out statistically along boundarie
reasonable lengths. The residual errors in the estimatio
the dense area should not be substantial in comparison
the inter- and intra-radiologists’ variations in their manu
segmentation.

Successful segmentation of dense tissue depends stro
on whether a mammogram can be classified correctly in
proper class. A successful classification will likely result
the selection of a near optimal threshold. Conversely, i
mammogram is classified into a wrong class, the thresh
will be selected incorrectly. For the mammograms of ve
fatty breasts, the gray level histogram has the characteris
of Class I, which contains one large single peak. These
tograms can be distinguished relatively easily from most
the other classes of histograms if those histograms exh
the typical features. For mammograms of BI-RADS categ
2 or 3, there are scattered fibroglandular or heterogene
densities in the breast. A small peak may be located on
left or on the right, or on both sides of the main peak on
histogram. The histogram could be classified into Class
the small peak is not large enough and is not detected
second peak. Otherwise, it would be classified into Clas
or Class III, depending on the location of that small pe
relative to the main peak of the histogram. For the two-pe
pattern histogram, the DA threshold selection method is
bust if there is an obvious valley between the two peaks
the valley is flat or not obvious, averaging the two thresho
obtained by the DA method in two different intervals,
designed for this study, can reduce the chance of calcula
an incorrect threshold that differs greatly from the optimu
but it also reduces the chance of finding the optimal thre
old. Overall, the rules designed for classification of the tw
peak patterns seem to perform consistently well for this d
set. One of the difficult situations is to distinguish betwe

ter
ear
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Medical Physics, Vo
TABLE II. A comparison of computer segmentation with the true standard. The ‘‘difference’’ was defined a
difference between the estimated % breast density and the true standard for each case, and the mea
standard deviation of this difference are tabulated.

Image subsets
No. of
images Correlation

RMS
error

Mean
difference

Std. dev. of
difference

CC view:
All 130 0.746 12.3% 1.3% 12.3%
Boundary correctly tracked 120 0.780 11.4% 1.4% 11.4%
Histogram correctly classified 122 0.943 6.1% 0.2% 6.2%
Boundary and histogram correctly done 113 0.953 5.6% 0.8% 5.6%
MLO view:
All 130 0.780 11.6% 1.9% 11.5%
Boundary correctly tracked 120 0.766 11.9% 2.1% 11.7%
Histogram correctly classified 122 0.914 7.2% 1.5% 7.1%
Pectoral muscle correctly trimmed 97 0.733 11.6% 1.6% 11.6%
Boundary and histogram correctly done 112 0.912 7.2% 1.7% 7.1%
Boundary, histogram and pectoral
muscle correctly done

83 0.891 7.1% 1.9% 6.8%
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Class I and Class IV, when the histogram of a very de
breast mimics that of a very fatty breast, as shown in Fig
This image was correctly classified with the additional fe
tures, Std and NSH. However, there were other cases
failed in spite of the additional criteria. The large differen
in the optimal threshold locations between these two clas
will lead to a large error in the estimated percent breast d
sity if the histogram is misclassified. Further study is need
to more accurately distinguish these two classes.

The dynamic range reduction technique reduces the v
ability of the gray level histograms and enhances their ch
acteristics. This pre-processing facilitates the classificatio
the image into the correct class. There are many im
smoothing techniques published in the literature. Low-p
filtering with a box filter is the simplest choice. The effe

FIG. 8. A comparison of the percent breast density obtained from the
radiologists’ manual segmentation with their average for the same mam
grams. The MLO view is shown. The trend for the CC view is similar.
l. 28, No. 6, June 2001
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tiveness of background correction with a box filtered ima
depends on the box size. We found that a 35335-pixel filter
is a good balance between computation time and the c
bility to remove the high frequency components. The su
traction of the low-pass filtered image from the original im
age is a form of unsharp masking. The breast boundar
generally enhanced as shown in Fig. 2~e!. The pixels at the
enhanced breast boundary contribute a small peak to the
tail of the gray level histogram of the breast area. Moreov
if dense tissue is present close to the breast boundary, it
not be segmented correctly due to intensity reduction. Ot
low frequency estimation techniques such as wavelet dec
position will be investigated in future studies.

In this feasibility study, we used a small data set of ma
mograms to develop a rule-based classifier for the histog
analysis. Although a large fraction of the histograms ma
fest characteristic features that can be grouped into f
classes, corresponding approximately to the four BI-RA
breast density ratings, there are many exceptions. One
example is shown in Fig. 9. This causes misclassification
incorrect thresholding by the histogram classifier. It will b

e
o-

TABLE III. A comparison of computer classification and radiologist
BI-RADS breast density ratings.

Computer
classification

BI-RADS
1

BI-RADS
2

BI-RADS
3

BI-RADS
4 Total

Class I 210 262 52 16 540
~16.2%! ~20.2%! ~4%! ~1.2%! ~41.5%!

Class II 0 92 184 24 300
~0%! ~7.1%! ~14.2%! ~1.8%! ~23.1%!

Class III 1 52 167 100 320
~0.1%! ~4%! ~12.8%! ~7.7%! ~24.6%!

Class IV 5 12 43 80 140
~0.4%! ~0.9%! ~3.3%! ~6.2%! ~10.8%!

Total 216 418 446 220 1300
~16.6%! ~32.2%! ~34.3%! ~16.9%! ~100%!
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FIG. 9. The gray level histograms of two mammograms classified by radiologists as BI-RADS rating 1~upper mammogram! and BI-RADS rating 4~lower
mammogram!. The shapes of the histograms are very similar and cannot be distinguished by our current histogram analysis method. These two exa
correctly classified with the additional Std and NSH criteria.
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necessary to investigate if other classification strategies
be more effective than a rule-based method. Furthermore
have not performed a systematic study to optimize the m
parameters used in the segmentation algorithm. Further w
will be required to investigate the dependence of the segm
tation accuracy on the various parameters. The param
selection and the performance of the computer classifier
have to be improved by training with a larger data set and
generalizability evaluated with unknown cases. The gene
zation of the algorithm to images acquired with other di
tizers or direct digital mammography systems will also ne
to be investigated.

V. CONCLUSION

We are developing an image analysis method for au
mated segmentation of the dense area from mammogr
and estimation of the percent mammographic density.
preliminary study indicates the feasibility of our approac
The computer-estimated mammographic breast density
relate closely with the average manual segmentation by
experienced radiologists and the average bias is much
than that of the radiologists’ visual estimation. We ha
found that correct classification of the histogram shape
the most crucial step in our approach. The histograms
many mammograms have distinctive characteristics that
be recognized by a rule-based classifier. However, some
tograms deviate from these rules and this can lead to m
classification. A further investigation will be needed to d
sign more robust rules or classifiers to improve t
classification accuracy. Despite these limitations, we h
Medical Physics, Vol. 28, No. 6, June 2001
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demonstrated in this preliminary study that the estimation
mammographic density can be performed efficiently and
curately by the automated image analysis tool. The fully
tomated algorithm can provide an objective and reproduc
quantitative estimation of mammographic breast density
is expected to be superior to subjective visual assessmen
comparable to manual segmentation by radiologists.
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APPENDIX A: GRAY-LEVEL
THRESHOLDING—DISCRIMINANT ANALYSIS „DA…

METHOD

Suppose the probability of the gray levelni in an image
with L gray levels can be estimated as

pi5ni /N, N5(
i 51

L

ni . ~A1!

If the pixels in the image are classified into two classesC0

and C1 by the thresholdk, then the probabilities of clas
occurrence and the class mean levels are given by
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v05(
i 51

k

pi5P~k!, v15 (
i 5k11

L

pi512P~k!, ~A2!

m05(
i 51

k

ipi /v05m~k!/v0 ,

~A3!

m15 (
i 5k11

L

ipi /v15
mT2m~k!

12P~k!
,

where

P~k!5(
i 51

k

pi , m~k!5(
i 51

k

ipi and mT5(
i 51

L

ipi , ~A4!

are the zeroth- and the first-order cumulative moments of
histogram up to thekth level, and the total mean level o
original image, respectively.

The between-class variance is defined as

sB
2~k!5v0~m02mT!21v1~m12mT!2

5v0v1~m12m0!25
@mTP~k!2m~k!#2

P~k!@12P~k!#
, ~A5!

and the optimal thresholdk* is given by

sB
2~k* !5 max

1<k<L
sB

2~k!. ~A6!

APPENDIX B: GRAY-LEVEL
THRESHOLDING—MAXIMUM ENTROPY
PRINCIPLE „MEP… METHOD

Suppose the probability of the gray levelni in an image
with L gray levels can be estimated as

pi5ni /N, N5(
i 51

L

ni . ~B1!

After thresholding the image by thresholdk, thea posteriori
probability of the pixels with gray level value less thank, is
given by

F~k!5(
i 50

k

pi . ~B2!

And thea posterioriprobability of all those pixels with val-
ues greater than or equal tok is 1-F(k). Thus the Shannon
entropy of the thresholded image is

H„F~k!…52F~k!logF~k!2„12F~k!…log„12F~k!….
~B3!

The optimal thresholdk maximizesH„F(k)….
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Correlation between mammographic density and volumetric fibroglandular
tissue estimated on breast MR images
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Previous studies have found that mammographic breast density is highly correlated with breast
cancer risk. Therefore, mammographic breast density may be considered as an important risk factor
in studies of breast cancer treatments. In this paper, we evaluated the accuracy of using mammo-
grams for estimating breast density by analyzing the correlation between the percent mammo-
graphic dense area and the percent glandular tissue volume as estimated from MR images. A dataset
of 67 cases having MR images~coronal 3-D SPGR T1-weighted pre-contrast! and corresponding
4-view mammograms was used in this study. Mammographic breast density was estimated by an
experienced radiologist and an automated image analysis tool, Mammography Density ESTimator
~MDEST! developed previously in our laboratory. For the estimation of the percent volume of
fibroglandular tissue in breast MR images, a semiautomatic method was developed to segment the
fibroglandular tissue from each slice. The tissue volume was calculated by integration over all slices
containing the breast. Interobserver variation was measured for 3 different readers. It was found that
the correlation between every two of the three readers for segmentation of MR volumetric fibro-
glandular tissue was 0.99. The correlations between the percent volumetric fibroglandular tissue on
MR images and the percent dense area of the CC and MLO views segmented by an experienced
radiologist were both 0.91. The correlation between the percent volumetric fibroglandular tissue on
MR images and the percent dense area of the CC and MLO views segmented by MDEST was 0.91
and 0.89, respectively. The root-mean-square~rms! residual ranged from 5.4% to 6.3%. The mean
bias ranged from 3% to 6%. The high correlation indicates that changes in mammographic density
may be a useful indicator of changes in fibroglandular tissue volume in the breast. ©2004 Ameri-
can Association of Physicists in Medicine.@DOI: 10.1118/1.1668512#

Key words: mammography, breast density, MR images, correlation
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I. INTRODUCTION

Studies have shown that there is a strong positive correla
between breast parenchymal density imaged on mam
grams and breast cancer risk.1–3 The relative risk is estimated
to be about 4 to 6 for women whose mammograms h
parenchymal densities over 60% of the breast area, as c
pared to women with less than 5% densities. Other coh
studies4–13 also found that breast cancer risk in the categ
with the most extensive dense tissue was 1.8 to 6 time
high as that in the category with the least extensive de
tissue. Mammographic density as the risk indicator is gre
than almost all other risk factors of breast cancer.2,14 Al-
though there is no direct evidence that changes in mam
graphic breast densities will result in changes in breast c
cer risk, the strong correlation between breast density
breast cancer risk has prompted researchers to use mam
graphic density for monitoring the effects of intervention
well as for studying breast cancer etiology.14–17

A number of researchers have investigated ima
analysis techniques to estimate breast density.15,18–28 The
common approaches are to analyze the textural pattern o
percentage of mammographic densities relative to the br
area. It has been found that the texture measures were c
933 Med. Phys. 31 „4…, April 2004 0094-2405 Õ2004Õ31„4
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lated with parenchymal density patterns but they appeare
be less sensitive measures of relative risk than the per
dense area.1,25,29 In current practice, breast density is es
mated mainly by radiologists’ visual judgment of the fibr
glandular tissue imaged on mammograms following
Breast Imaging—Reporting and Data System~BI-RADS!
lexicon.30,31 Because of the qualitative and subjective natu
of visual judgment, there are large intraobserver and inter
server variations in the estimated breast density. The la
variability may reduce the observed correlation betwe
breast cancer risk and breast density. It may also reduce
sensitivity of studies using mammographic density for mo
toring the effect of risk modifying treatments. We have d
veloped an automated image analysis system, Mam
graphic Density ESTimator~MDEST!, to assist radiologists
in estimating breast density on mammograms. A compu
ized analysis is expected to increase the reproducibility
consistency in the estimation of mammographic dens
thereby improving the accuracy of the related studies. In
previous study, we have found that the percent mamm
graphic density segmented by MDEST agreed closely w
that estimated by radiologists’ interactive thresholding.32

The high correlation between breast cancer risk and br
933…Õ933Õ10Õ$22.00 © 2004 Am. Assoc. Phys. Med.
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934 Wei et al. : Correlation of density between mammography and MR images 934
density indicates that breast cancer risk may be closely
lated to the volume of glandular tissue in the breast. Amo
the modalities available for breast imaging at present, m
netic resonance~MR! imaging is likely to be the most accu
rate method for volumetric dense tissue estimation beca
fibroglandular tissue and adipose tissue can be well dis
guished in MR images when a proper image acquisition te
nique is used.33 However, MR imaging is expensive, makin
it difficult to use MR imaging as a routine monitorin
tool.33,34 On the other hand, a mammogram is a tw
dimensional~2-D! projection image of a three-dimension
~3-D! object. The area of dense tissue measured on a m
mogram is not an accurate measure of the volume of fib
glandular tissue in the breast because no thickness info
tion is used. However, mammography is a widely availa
low cost procedure that may be used for monitoring bre
density change during preventive and interventional tre
ment or other studies. Women who participate in screen
will also have mammograms readily available for retrosp
tive review. Therefore, mammography will most likely be t
method of choice for breast density estimation.

In this study, we investigated the correlation between
volumetric fibroglandular tissue in the breast and the p
jected breast dense area on mammograms by analyzing
percent volumetric fibroglandular tissue in MR breast ima
and the percent dense area in corresponding mammogr
Our purpose in this study is not to evaluate the usefulnes
either MR fibroglandular tissue volume or mammograp
density as an indicator for breast cancer risk, which h
been studied by other investigators. Rather, we used the
breast images to estimate the volumetric fibroglandular tis
in the breast and explored the reason that a change in m
mographic density~2-D! can be used as an indicator of brea
density change~3-D!. These comparisons will provide a be
ter understanding of their relationship, and may lead to
proved methods for utilizing mammographic density as
surrogate marker for breast cancer risk.

II. MATERIALS AND METHOD

A. Dataset

In a previous study, gadolinium contrast enhanced M
dynamic imaging was employed to characterize malign
and benign breast lesions. A dataset was collected with
approval which included MR images and correspond
mammograms acquired between detection and before bi
for a given patient. In the MR study, several series of ima
were acquired for each patient. Patients were scanned p
using a commercial dual phased-array breast coil. The im
ing protocol included a series was the coronal 3-D T
weighted pre-contrast series~coronal sections 2–5 mm thick
32 slices; 3-D Spoiled Gradient-Recalled Echo~SPGR!; TE
53.3 ms; TR510 ms, Flip540°, matrix52563128, FOV
528– 32 cm right/left, 14–16 cm superior/inferior, sc
time52 min 38 sec!. This 3-D SPGR sequence produces f
volume coverage of both breasts with contiguous image
tions. The dense parenchyma and fat tissue are well s
rated with this heavily T1-weighted acquisition. We used
Medical Physics, Vol. 31, No. 4, April 2004
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set of 67 patients to study the correlation between the
projected percentage of dense area on a mammogram an
percentage of dense tissue volume estimated from the
MR images.

The mammograms consisting of the craniocaudal~CC!
view and the mediolateral oblique~MLO! view of both
breasts of the patient were digitized with a LUMISYS 8
laser film scanner at a pixel size of 50mm350mm. The
digitizer has a gray level resolution of 12 bits and a nomi
optical density~O.D.! range of 0 to 4. For density segmen
tation, it is not necessary to use very high-resolution imag
To reduce processing time, the full resolution mammogra
were first smoothed with a 16316 box filter and subsample
by a factor of 16, resulting in 800mm3800mm images for
this study.

B. Estimation of fibroglandular tissue volume on MR
images

Since it is not our intention to routinely segment MR im
ages for breast density estimation, we did not attempt
develop an automated method for this application. Our al
rithm for segmentation of volumetric fibroglandular tissue
MR images used a semi-automatic method. The comp
performed an initial segmentation. A graphical user interfa
~GUI! was developed to allow a user to review the segm
tation of every slice and make modifications if necessa
The method consists of four steps. First, the breast boun
was detected automatically on each slice. A deforma
model and manual modification were used to correct for
correctly detected boundaries that usually occurred in sl
near the chest wall where there were no well-defined bre
boundaries. Because of inhomogeneity of the breast coil s
sitivity, the signal intensity in the breast region was not u
form across the field of view. A background correction tec
nique that estimated the low frequency background from
gray levels along the breast boundary was developed to
duce this systematic nonuniformity. Manual interacti
thresholding of the gray level histogram in the breast reg
was then used to separate the fibroglandular from the f
region. Morphological erosion was used to exclude the s
voxels along the breast boundary. Finally, the volume of
broglandular tissue was calculated by integration over
slices containing the breast. A flow chart of our algorithm
shown in Fig. 1.

C. Breast boundary detection

A two-step algorithm was developed for the detection
breast boundary on each slice. First, we used a seeded
thresholding algorithm~SPTA! for the initial assessment of
breast boundary. Second, a 2-D active contour algorithm
ther refined the boundary. For slices close to the chest w
where no clear boundary can be seen, manual modifica
was used to outline an estimated boundary.

The SPTA determined the optimal threshold by iterative
partitioning the MR image into two parts and using the g
dient value along the boundary of the partition as a guide
optimizing the threshold. First, the center of gravity was
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935 Wei et al. : Correlation of density between mammography and MR images 935
lected as the starting pixel on each slice. The gray leve
the starting pixel was used as a threshold to create a bi
partition of the image in which all pixels greater than t
threshold were set to one and all other pixels were se
zero. Second, the gradient value of each pixel on the bou
ary of the binary partition was calculated by applying t
Sobel filter to the original image. The gradient assessm
for this particular binary partition was defined as the aver
gradient magnitude of these boundary pixels. The thresh
value was reduced to zero in a stepwise manner. The p
tion for each threshold value was created and the grad
assessment for each partition was calculated as desc
above. The partition with the maximum gradient assessm
was considered to be the initial segmentation result for
breast, and the boundary of this partition was considere
be the initial breast boundary.

After the initial segmentation, a deformable conto
method was used to further refine the boundary. The mo
ment of the boundary pixel was controlled by an ene
function which consisted of internal energy and external
ergy. The internal energy components used in this study w
the continuity and curvature of the contour, as well as
homogeneity of the segmented partition. The external ene
components were the negative of the smoothed image g
ent magnitude, and a balloon force that exerted pressure
normal direction to the contour. The energy function w
defined as the following:

E5 (
c51

N

@Einter~c!1Eexert~c!#, ~1!

whereEinter andEexertare the internal energy and the extern
energy, respectively, as defined in Eq.~2! and Eq.~3!:

Einter5wcurvEcurv~c!1wcontEcont~c!1whomEhom, ~2!

FIG. 1. The flow-chart for the segmentation of the fibroglandular tissue
MR images.
Medical Physics, Vol. 31, No. 4, April 2004
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where curv, cont, grad, bal, hom denoted curvature, cont
ity, gradient, balloon force and homogeneity, respective
and each energy term was associated with a weight,w. The
detailed definition for each term can be found in t
literature.35 An example of a MR slice of a breast is shown
Fig. 2~a!, and the segmented boundary is shown in Fig. 2~b!.
Note that the two breasts of a patient were scanned toge
but each breast was analyzed separately.

D. Background correction

To reduce the nonuniformity of the MR signal intensity
the breast region, a background correction technique36 using
the pixel values around the segmented breast region was
ployed. For a given pixel (i , j ) inside the breast region, th
gray value of the background image was estimated as sh
in Eq. ~4!:

B~ i , j !5F L

dl
1

R

dr
1

U

du
1

D

dd
G Y F 1

dl
1

1

dr
1

1

du
1

1

dd
G ,

~4!

whereL, R, U and D are the average gray values inside
breast background estimation region~BBER! centered at the
left, right, upper and lower pixels on the breast bounda
respectively. A BBER was defined as the intersection o
21321-pixel box and the breast region. The center pixels
the left and right boxes were the intersection points betw
the breast boundary and a horizontal line passing through
given pixel (i , j ). Similarly, the upper and lower center pix
els for the upper and lower boxes were the intersection po
between the breast boundary and a vertical line pas
through the given pixel (i , j ). Only the pixels that were
within the intersected area between the 21321-pixel box and
the breast region were included in the definition of the BBE
and the calculation of the average gray value. The contri
tions of the average gray levels to the background pixel (i , j )
were inversely weighted by their distancesdl ,dr ,du ,dd

from the given pixel (i , j ). An example of the background
corrected image is shown in Fig. 2~c!.

E. Segmentation of fibroglandular tissue

We developed a GUI that allowed the user to perform
combination of manual and automatic operations to segm
the breast boundary and the fibroglandular tissue on the

n

FIG. 2. An example of the first three processing blocks in Fig. 1.~a! Original
MR slice; ~b! automatically-detected breast boundary superimposed on
image; and~c! the background-corrected image.
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FIG. 3. The graphic user interface fo
the segmentation of the fibroglandula
tissues on the MR slice. The uppe
row shows the original MR slice~left!,
the background-corrected imag
~middle! and the segmented binary im
age ~right!. The segmented image re
sponds to the reader’s adjustment
the gray level threshold~lower row! in
real time so that the reader can choo
the appropriate threshold by inspectin
the segmented image visually. Th
dark area in the segmented image i
dicates the fibroglandular tissue an
the white area indicates the adipos
tissue. The inner line along the brea
boundary is the boundary obtained b
morphological erosion to exclude th
skin voxels for calculating the fibro-
glandular tissue volume.
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images. The first window~not shown! displayed the MR se-
ries and the corresponding mammogram of each breas
give the user an overview of the breast. The segmentatio
the fibroglandular tissue on each MR slice was processe
the second window, shown in Fig. 3. The original MR slic
the corresponding background corrected image and the
mented binary image were shown in the upper part of
window. At the lower part of the window, the histogram
the voxel values in the breast region was shown. The u
performed interactive thresholding on the histogram and
segmented binary image corresponding to the chosen thr
old was displayed in real time in the upper part. If the bre
boundary, which was automatically segmented by the co
puter initially, had to be corrected, the user could go to
third window and manually move the apices of the polyg
outlining the boundary. The voxels contributed by the nip
were excluded. On the slices containing breast skin that
voxel values similar to those of fibroglandular tissue, a m
phological erosion operation was applied to the bre
boundary to exclude the skin voxels from the calculation
the fibroglandular tissue volume in the slice. The size of
structuring element could be selected interactively on
fourth window and the eroded boundary was displayed
stantly for a chosen erosion operation. The user might ag
change the structuring element if the erosion result of
previous choice was deemed unsatisfactory. Since the er
boundary only marked the region within which the fibrogla
dular voxels would be summed and would not be used
the calculation of the breast volume, as described below
did not need to be precise as long as it excluded the
voxels while not excluding the fibroglandular voxels.
Medical Physics, Vol. 31, No. 4, April 2004
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F. MR fibroglandular tissue volume

After the fibroglandular tissue was segmented for ea
slice, the total number of voxels containing the fibrogland
lar tissue was obtained as a summation of these voxels
all slices of the breast. The total volume of the breast w
obtained as the summation of the voxels enclosed by
breast boundary before morphological erosion. The ratio
these two volumes provided the percent volumetric fib
glandular tissue in the breast.

G. Mammographic density segmentation

We have previously developed an automated method
segmentation of the dense fibroglandular area on mam
grams. The method, referred to as the Mammographic D
sity ESTimator ~MDEST! was described in detai
elsewhere.32 In brief, the breast boundary on the digitize
mammogram is tracked. A dynamic-range compression te
nique reduces the gray level range of the breast area.
analyzing the shape of the gray level histogram, a rule-ba
classifier classifies the breast density into one of four clas
Typically, a Class I breast is almost entirely fat; it has
single narrow peak on the histogram. A Class II breast c
tains scattered fibroglandular densities. Its histogram has
main peaks, with the smaller peak on the right of the big
one. A Class III breast is heterogeneously dense. Its hi
gram also has two peaks, but the smaller peak is on the
of the bigger one. A Class IV breast is extremely dense.
histogram has mainly a single dominant peak, but the pea
wider compared with the peak in the Class I histogram
second smaller peak sometimes occurs on the left of
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FIG. 4. A comparison of the percent mammograph
density obtained from interactive thresholding by a
MQSA-qualified radiologist and that estimated by o
automated MDEST computer program.~a! CC view,
correlation coefficient50.90, rms residual56.7, mean
difference50.3; ~b! MLO view, correlation coefficient
50.89, rms residual56.1, mean difference50.4.
Dashed line: linear regression of the data; solid lin
diagonal.
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main peak. Based on the histogram shape, a thresho
automatically calculated to separate the dense and fatty
els. The mammographic density was estimated as the
centage of fibroglandular tissue area relative to the t
breast area. For MLO view mammograms, the pecto
muscle is detected and excluded from the density are
breast area calculations. In our previous work, the per
mance of MDEST was verified by comparison with manu
segmentation by 5 breast imaging radiologists using a dat
of 260 mammograms from 65 patients that were differ
from the cases used in the current study. We found that
correlation between the computer-estimated percent d
area and the average segmentation by the 5 radiologists
0.94 and 0.91, respectively, for CC and MLO views, with
mean bias of less than 2%.

MDEST was applied to the mammograms of the 67
tients used in this study. The percent dense area on mam
grams was estimated for the CC-view and the MLO-vi
mammogram of each breast separately. In addition,
MQSA-qualified radiologist also segmented the dense a
by interactive thresholding for each mammogram. The c
relation between the mammographic density obtained
manual and automatic segmentation is shown in Figs.~a!
and 4~b! for the CC view and MLO view, respectively. Th
correlation coefficients for the CC view and MLO view we
0.90 and 0.89, respectively. The mammographic densities
timated by automatic and manual segmentation were c
pared with the percent volumetric fibroglandular tissue
MR images as described below.

H. Observer experiments

We performed an experiment to evaluate the variability
the estimated % volumetric fibroglandular tissue due to
uncertainty in the determination of the starting slice of t
breast at the chest wall. The starting slice affected the e
mation of the breast volume that was calculated by integ
ing from the starting slice to the anterior of the brea
Twenty-three MR cases from the dataset were randomly
lected for this observer experiment. There were a total of
breasts because some cases had only one breast. Fo
subset of cases, each radiologist was asked to select the
ing slice from the MR images for each breast. The estima
Medical Physics, Vol. 31, No. 4, April 2004
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% volumetric fibroglandular tissue calculated with all ava
able slices was then compared to that calculated with
selected starting slice.

We also performed observer experiments to evaluate
inter-observer variations in the segmentation of fibroglan
lar tissue using the semi-automatic method. Two MQS
qualified radiologists performed the segmentation of the
roglandular tissue on the MR images of the 41 breasts u
the semi-automatic method implemented with the GUI.
Ph.D. researcher who was trained by these radiologists
performed the segmentation independently with the GUI.

After verifying the consistency of segmentation by the
observers, the trained Ph.D. completed the segmentatio
all MR cases. The correlation between percent volume
fibroglandular tissue on MR images and percent dense
on mammograms was then examined for the entire data

III. RESULTS

A. Effect of selection of the starting slice

Figure 5~a! shows the correlation of the % volumetr
fibroglandular tissue calculated using all available slices
the breast with that calculated using the selected star
slice by radiologist A for the 41 breasts. The correlation c
efficient was 0.999. To compare the difference between t
results, the mean difference and the root-mean-square~rms!
residual, which is the residual from the linear least-squar
fitted line, were also calculated. The mean difference was
and the rms residual was 0.6. The result is similar for ra
ologist B~not shown!, with a correlation coefficient of 0.999
a mean difference of 0.4 and a rms residual of 0.4. T
correlation between the % volumetric fibroglandular tiss
calculated using the selected starting slice by radiologis
with that calculated using the selected starting slice by ra
ologist B was also very high with a correlation coefficient
0.988, a mean difference of 0.7 and a rms residual of 1.8
shown in Fig. 5~b!. These comparisons indicated that t
variability in the selection of the starting slice of the brea
did not have a strong influence on the % volumetric fib
glandular tissue. We therefore used all available slices in
MR dataset for each breast in the following analyses.
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FIG. 5. ~a! A comparison of the percent fibroglandula
tissue volume calculated using the selected start
slice with that calculated using all available slices f
radiologist A, correlation coefficient50.999.~b! A com-
parison of the percent fibroglandular tissue volume c
culated using the selected starting slice by radiologis
with that by radiologist A, correlation coefficien
50.988, Dashed line: linear regression of the da
solid line: diagonal.
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B. Inter-observer variation between radiologists

Figure 6~a! shows the comparison of the percent volum
ric fibroglandular tissues on MR images segmented by
radiologists for the 41 breasts. The correlation between
segmentation results of the two radiologists is 0.99. T
mean difference was found to be 0.3 and the rms resid
was 1.6.

C. Inter-observer variation between radiologists and
trained Ph.D.

Figure 6~b! shows the comparison of the percent volum
ric fibroglandular tissues segmented by the trained Ph
against that segmented by radiologist A. A similar result w
obtained by comparing the percent volumetric tissue s
mented by the trained Ph.D. and that segmented by rad
gist A except that the data points were even closer to
diagonal~not shown!. The correlation between the result
the trained Ph.D. and the results of both radiologists w
0.99. The corresponding mean differences were20.8 and
20.4, respectively, and the rms residuals were 1.4 and
respectively.

D. Correlation between percent volumetric
fibroglandular tissue on MR images and percent
mammographic density

The percent volumetric fibroglandular tissue on MR im
ages was compared with the percent dense area on CC
Medical Physics, Vol. 31, No. 4, April 2004
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MLO-view mammograms. After verifying that the differenc
in segmentation between the trained Ph.D. and the radi
gists was similar to the interobserver variations between
two experienced radiologists, the trained Ph.D. comple
the segmentation of the entire dataset.

Figure 7 shows the comparison of the percent volume
fibroglandular tissue on MRI and the percent mammograp
density segmented by a radiologist. The percent areas on
and MLO-view mammograms are higher than the perc
volume on MR images with a mean difference of 5.7% a
3.0%, respectively.

Figure 8 shows the comparison of the percent volume
fibroglandular tissue on MRI and the percent mammograp
density segmented by MDEST. The percent areas on
and MLO-view mammograms segmented by the compu
are higher than the percent volume on MR images with
mean difference of 5.3% and 2.6%, respectively.

The correlation coefficients, the mean differences and
rms residuals between the percent volumetric fibrogland
tissue on MR images and percent dense area on mam
grams are compared in Table. I. The correlation between
percent volume on MR images and percent area on mam
grams of the fibroglandular breast tissue is high, rang
from 0.89 to 0.91. Although it is not expected that the valu
of percent volume agree with the values of percent area, t
mean differences range only from 3% to 6% and the r
residual range from 5.4 to 6.3.
n-
rs:
r-

is
he
n-
es.
e:
FIG. 6. A comparison of the segmentation of fibrogla
dular tissue from MR images between two observe
~a! two experienced MQSA-qualified radiologists, co
relation coefficient50.99. ~b! The trained Ph.D. and
Radiologist A, correlation coefficient50.99. The corre-
lation between the trained Ph.D. and Radiologist B
also 0.99 but the data points were very close to t
diagonal and is not shown. The % volumetric fibrogla
dular tissue was calculated using all available slic
Dashed line: linear regression of the data; solid lin
diagonal.
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FIG. 7. A comparison of the percent fibroglandular ti
sue volume on MR images and the percent dense a
on mammograms segmented by an experienced radi
gist. ~a! CC view, correlation coefficient50.91; ~b!
MLO view, correlation coefficient50.91. Dashed line:
linear regression of the data; solid line: diagonal.
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IV. DISCUSSION

Our purpose in this paper was to investigate the relati
ship between the percent dense area on mammogram an
percent fibroglandular tissue volume on MR image. W
found a direct correlation between mammographic den
and MR volumetric density~Fig. 7 and Fig. 8!. The correla-
tion coefficients between the percent area on a mammog
and the percent volume on MR images are high at 0.89
0.91. These results are more promising than those foun
previous studies that attempted to correlate percent d
area on mammograms with MR information. Grahamet al.33

investigated the relationship between percent density~pro-
jected dense area! on mammogram and two objective M
parameters of breast tissue, relative water content and m
T2 relaxation. Their results with 45 cases showed a posi
correlation between percent density and relative water c
tent ~Pearson correlation coefficient50.79) and a negative
correlation between percent density and mean T2 va
~Pearson correlation coefficient520.61). Another study by
Leeet al.34 analyzed fatty and fibroglandular tissue in diffe
ent age groups to compare x-ray mammography with
weighted MR images. Their study with 40 cases indica
that the correlation between the two techniques is 0.63 w
the fat content was more than 45%. However, the correla
coefficient decreased to 0.34 when their analysis inclu
only dense breasts.

It may be noted that although MR imaging is currently t
most accurate method for estimating the volumetric fib
Medical Physics, Vol. 31, No. 4, April 2004
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glandular tissue in the breast, it is still not the ideal to
Fibrous tissue and glandular tissue are not well separ
with current MR imaging techniques. Since the amount
glandular tissue in the breast is the important factor relat
to breast cancer risk, further studies are warranted for dif
entiating the glandular and the fibrous components of
imaged volume. The correlation between the percent glan
lar tissue volume and percent projected dense area o
mammogram will be a more reliable indicator of the usef
ness of mammographic density analysis.

The density on mammograms is a 2-D projected area
the fibroglandular tissues. The percent dense area is no
pected to be equal in value to the percent volume. The m
differences between the percent volume and the percent
on CC- and MLO-views, as determined by the radiologis
interactive segmentation, are 5.7 and 3.0, respectively~Table
I!, with the percent dense area values being higher. We
investigated the rms residual between the percent volu
and the percent area when the relationship between them
assumed to be linear. The rms residual between the per
volume and the percent area on CC- and MLO-views are
and 5.6, respectively~Table I!, relative to the straight line
obtained from linear least squares fits to the data. One p
sible factor that may contribute to a higher value of perc
dense area on mammograms than the percent volume v
on MR images is that the tissue volume imaged by the t
modalities is somewhat different. The MR images inclu
more tissue near the chest wall, which is mainly retrogla
R
nted

-

FIG. 8. A comparison of the percent volume on M
images and the percent area on mammogram segme
by our automated MDEST computer program.~a! CC
view, correlation coefficient50.91; ~b! MLO view, cor-
relation coefficient50.89. Dashed line: linear regres
sion of the data; solid line: diagonal.
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dular adipose tissue, than a mammogram does, thus redu
the percentage of fibroglandular tissue volume. The red
tion in the percent volume values, however, is relativ
small, as found in our study evaluating the effects of sele
ing starting slices for volume calculation~Fig. 5!. The main
difference may therefore be attributed to the geometric r
tionship between the volume and the projected 2-D a
explained later.

Geometrically, we do not expect the relationship betwe
volume and its projected 2-D area to be linear. In a hy
thetical situation such that the dense tissue volume i
sphere (volume54/3 pr3) enclosed inside a concentr
spherical shell of fatty tissue volume, the percent projec
2-D area (area5 pr2) of the inner sphere relative to th
outer sphere is equal to the percent volume to the powe
2/3. The relationship between the percent area and the
cent volume is therefore not linear, and the percent are
larger in value than the percent volume for any ratio of ra
between the two spheres. In general, the compressed b
and the dense tissue are not spherical. To investigate
empirical relationship between the percent area and the
cent volume in the nonlinear situation, we applied le
squares fits in several polynomial models to the data po
in Fig. 7. The results are shown in Table II and Fig. 9.
comparison of Table I and Table II indicates that theY
5kx2/3 model (x5percent fibroglandular tissue volume,Y
5percent mammographic dense area! resulted in slightly
larger rms residuals than the linear model. The modeY
5kxm with m equal to 0.83 and 0.86, respectively, for C
and MLO-views slightly reduced the rms residuals. The b
fit was obtained from the modelY5k1xm1k2 . However, the

TABLE I. Statistic analysis of the relationship between percent fibrogland
tissue volume on breast MR images and percent dense area on ma
grams segmented by radiologist and MDEST.

Radiologist Computer (MDEST)

CC vs
MRI

MLO vs
MRI

CC vs
MRI

MLO vs
MRI

Correl. coeff. 0.91 0.91 0.91 0.89
rms residual 6.3 5.6 5.8 5.4
Mean diff. 5.7 3.0 5.3 2.6
Medical Physics, Vol. 31, No. 4, April 2004
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situation that the percent projected area was negative w
the percent volume was zero would not occur physica
Note that if the model was fitted to the percent area d
segmented by MDEST~Fig. 8!, thek2 values would become
positive, indicating that the nonzerok2 values are likely
caused by segmentation biases.

Overall, these models demonstrate that there is no sim
mathematical relationship between the percent volume
the percent projected area but the values for the expon
appeared to be in a reasonable range. The relationship
tween the percent volumes of two 3-D objects, one with
another, and their percent projected 2-D area depends
their shapes. For example, the closer the two volumes ar
concentric cylinders of the same height, the closer the ex
nent is to unity. The spread of the data points can there
be attributed to the various irregular shapes of the fibrogl
dular tissue in the breasts, the changes in the shapes o
fatty and fibroglandular tissue due to compression, as we
the uncertainties in the segmentation of both the mamm
grams and the MR images. Although the spread of the d
points in the correlation plots is large, one can expect t
when the mammographic density of a given patient is mo
tored over time, the variations in the projected dense a
due to the geometric factors, described above, will actu
be much less than that observed from the scatter plots am
a large number of patients. In other words, the uncertaint
the estimated percent density from the serial mammogr
of a given patient should be much less than those show

TABLE II. An analysis of the relationship between percent fibroglandu
tissue volume (x) on breast MR images and percent dense area (Y) on
mammograms segmented by radiologist using three mathematical mo
m, k, k1 andk2 are constants determined by least squares curve fitting

Mathematical model Y5kx2/3 Y5kxm Y5k1xm1k2

CC
vs

MRI

Least squares FitY50.82x2/3 Y51.03x0.83 Y51.02x0.4820.19
rms residual 6.5 6.0 5.6

Coefficient of
determination

0.82 0.85 0.87

MLO
vs

MRI

Least squares FitY50.73x2/3 Y50.96x0.86 Y50.90x0.6020.09
rms residual 6.0 5.5 5.3

Coefficient of
determination

0.80 0.84 0.85

r
o-
e
y a
FIG. 9. Nonlinear fitting of the relationship between th
percent volume and the percent area segmented b
radiologist with the least squares method.~a! CC view,
~b! MLO view. Dashed line:y5kx2/3; dashed–dotted–
dotted line:y5kxm; solid line: y5k1xm1k2 . The fit-
ted parameters of the models,m, k, k1 and k2 , are
shown in Table II.
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Fig. 7. The strong correlation observed between the per
dense area on mammograms and the percent volumetric
roglandular tissue on MR images therefore indicates th
change in mammographic density can be a useful indic
of a change in percent fibroglandular tissue volume in
breast.

Recently, some researchers attempted to estimate
thickness of the fibroglandular tissue in local regions of
mammograms from the projected density.37 This approach is
expected to provide a more accurate estimation of the fib
glandular tissue volume if the true thicknesses of the fib
glandular tissue and fatty tissue can be determined at var
locations of the projected breast region. The volume of
fibroglandular tissue can then be summed over the pixel
the breast region and the percent volume calculated. H
ever, to obtain accurate measurements, this approach req
the knowledge of the sensitometric curve for the screen-
mammogram at the imaging facility~or use of a digital de-
tector with linear response! and other physical paramete
such as the scatter fraction, the beam quality and beam h
ening, in addition to the compressed breast thickness and
breast shape profile at the periphery. Some of the requ
ments may be circumvented by using a look-up table pre
termined with a phantom calibration. Other factors may ha
to be approximated or ignored, or require further correctio
by imaging each mammogram with a calibration phant
placed adjacent to the breast. This method is still being
veloped and the accuracy of estimating the thickness of
local fibroglandular tissue from a mammogram is yet to
determined. To our knowledge, no study to date has dem
strated that fibroglandular tissue volume estimated fr
mammograms has a higher correlation with the percent v
metric fibroglandular tissue volume estimated from MR i
ages or other volumetric methods than we found in our c
rent study. Furthermore, even if the local fibroglandu
tissue thickness on mammograms can be measured in a
ratory or in an academic center using elaborate calibra
schemes, it is doubtful that these methods can be trans
into routine clinical measurement in mammography clini
Its use may then be limited to controlled clinical trials. A
estimation of the percent dense area projected on mam
grams is likely a more practical approach for breast den
assessment. The high correlation between the percent d
area and the percent fibroglandular tissue volume on
images as demonstrated in the current study further supp
the validity of this approach.

V. CONCLUSION

In this study, we investigated the correlation between
percent mammographic dense area and the percent volu
ric fibroglandular tissue as measured on MR images. A se
automatic method was developed for segmentation of
MR images and a fully automated computerized meth
MDEST, was used to segment the mammograms. The
formance of MDEST on the set of mammograms used in
study was verified with an experienced radiologist’s man
segmentation. The inter-observer variability in segmenta
Medical Physics, Vol. 31, No. 4, April 2004
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of MR images was found to be small with correlation coe
ficients of 0.99. The correlation between the percent volu
on MR images and percent area segmented by a radiolo
for either CC- view or MLO-view is 0.91. The correlatio
between percent volume and percent area estimated by
EST is 0.91 and 0.89, respectively, for CC and MLO view
Mammographic density is thus highly correlated with t
percent volumetric fibroglandular tissue in the breast. T
high correlation indicates that changes in mammograp
density may be a useful indicator of changes in fibroglan
lar tissue volume in the breast. Our computerized ima
analysis tool, MDEST, can provide a consistent and rep
ducible estimation of percent dense area on routine clin
mammograms. The automated image analysis tool may
prove the sensitivity of quantifying mammographic dens
changes, thereby contributing to the understanding of the
lationship of mammographic density to breast cancer r
detection, and prognosis, and the prevention and treatme
breast cancer.
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Purpose: To retrospectively compare computer-aided mammo-
graphic density estimation (MDEST) with radiologist esti-
mates of percentage density and Breast Imaging Reporting
and Data System (BI-RADS) density classification.

Materials and
Methods:

Institutional Review Board approval was obtained for this
HIPAA-compliant study; patient informed consent require-
ments were waived. A fully automated MDEST computer
program was used to measure breast density on digitized
mammograms in 65 women (mean age, 53 years; range,
24–89 years). Pixel gray levels in detected breast borders
were analyzed, and dense areas were segmented. Percentage
density was calculated by dividing the number of dense pixels
by the total number of pixels within the borders. Seven
breast radiologists (five trained with MDEST, two not
trained) prospectively assigned qualitative BI-RADS density
categories and visually estimated percentage density on 260
mammograms. Qualitative BI-RADS assessments were com-
pared with new quantitative BI-RADS standards. The refer-
ence standard density for this study was established by allow-
ing the five trained radiologists to manipulate the MDEST
gray-level thresholds, which segmented mammograms into
dense and nondense areas. Statistical tests performed in-
clude Pearson correlation coefficients, Bland-Altman agree-
ment method, � statistics, and unpaired t tests.

Results: There was a close correlation between the reference stan-
dard and radiologist-estimated density (R � 0.90–0.95)
and MDEST density (R � 0.89). Untrained radiologists
overestimated percentage density by an average of 37%,
versus 6% for trained radiologists (P � .001). MDEST
showed better agreement with the reference standard (av-
erage overestimate, 1%; range, �15% to �18%). MDEST
correlated better with percentage density than with quali-
tative BI-RADS categories. There were large overlaps and
ranges of percentage density in qualitative BI-RADS cate-
gories 2–4. Qualitative BI-RADS categories correlated
poorly with new quantitative BI-RADS categories, and 16
(6%) of 260 views were erroneously classified by MDEST.

Conclusion: MDEST compared favorably with radiologist estimates of
percentage density and is more reproducible than radiolo-
gist estimates when qualitative BI-RADS density categories
are used. Qualitative and quantitative BI-RADS density
assessments differed markedly.

� RSNA, 2006
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Previous breast density assess-
ments performed by using the
Breast Imaging Reporting and

Data System (BI-RADS) have been com-
pletely qualitative. The new (fourth edi-
tion) BI-RADS involves combined quali-
tative and quantitative assessments (1).
The quantitative assessments are di-
vided into quartiles, with category 1 in-
dicating breast tissue that is less than
25% glandular; category 2, breast tissue
that is approximately 25%–50% glandu-
lar; category 3, breast tissue that is ap-
proximately 51%–75% glandular; and
category 4, breast tissue that is more
than 75% glandular (1). The qualitative
descriptive terms remain the same (1).
The correlation between the new quan-
titative assessments and the conven-
tional qualitative density assessments
has not been well studied. The main
purpose of using the BI-RADS density
categories is to indicate the relative sen-
sitivity of the mammographic examina-
tion in the detection of breast carci-
noma, which may be lower in cases of
dense breasts (1). Quantitative assess-
ment of breast density may enable a
more precise determination of differ-
ences in breast density.

Mammographic density is important
for two main reasons: First, the sensi-
tivity of mammography in the detection
of breast carcinoma is lower in dense
breasts because dense fibroglandular
tissue may obscure calcifications and
masses (1–3). Second, there is a direct
association between increased mammo-
graphic density and increased risk of
developing breast cancer (4–10). In ad-
dition, investigators who use quantita-
tive assessment of mammographic den-
sity report higher odds ratios for the
development of breast carcinoma in
women with dense breasts compared
with the odds ratios reported by investi-
gators who use subjective assessment of
density (7,8,11). Boyd et al (6) con-
firmed the importance of using precise
methods to determine mammographic
density: They observed a 2% increase in
the relative risk of breast cancer for
every 1% increase in mammographic
density percentage.

There is also evidence that hor-
monal therapies, including estrogen and

tamoxifen treatments, can change mam-
mographic density (9,12–14) and alter
the risk of breast carcinoma (15–18).
Whether this relationship is causal re-
mains to be proved. A simple and accu-
rate method of measuring breast density
would be a useful tool for investigating
breast cancer risk–mammographic den-
sity relationships.

Several methods to objectively
quantitate mammographic density ex-
ist. The original method, described by
Wolfe et al (11) in 1987, involved the
use of manual planimetry to compute
the density percentage: The dense
white areas on mammograms were
manually traced. However, as the au-
thors themselves noted, this method
was “tedious and time-consuming.” More
recent techniques have been facilitated by
the advent of digital methods of acquiring
and viewing mammographic data. Al-
though these methods involve the use of
computers, some of them are only par-
tially automated (19,20). One such
method was based on an ordinal rank-
ing system rather than on a density per-
centage system (20). More recent com-
puterized programs have been fully au-
tomated (10,21,22).

We developed a method in which a
fully automated mammographic density
estimation (MDEST) program is used to
rapidly determine the perimeter of the
breast and quantitate the mammographic
density percentage (23). Thus, the pur-
pose of our study was to retrospectively
compare mammographic densities deter-
mined by using this MDEST program
with both radiologists’ estimates of den-
sity percentage and BI-RADS breast den-
sity categories.

Materials and Methods

Mammogram Selection and Digitization
The authors had control of the data and
the information submitted for publica-
tion. The data set comprised the four-
view craniocaudal (CC) and medio-
lateral oblique (MLO) mammograms
obtained in 65 patients who were ran-
domly selected from a National Cancer
Institute–designated comprehensive can-
cer center (University of Michigan Health

Center) after institutional review board
approval was obtained. This is the same
mammogram data set used in a prior
study (23). The requirement for individ-
ual patient informed consent was waived.
Our study was HIPAA compliant. We
originally selected 50 consecutive normal
four-view screening mammograms for
analysis. Four 4 months later, to include
more qualitative BI-RADS density cate-
gory 3 and 4 mammograms—since these
were underrepresented in the original
sample—we selected an additional 15
consecutive normal four-view mammo-
grams that had been qualitatively deter-
mined to be dense. The ages of the 65
women ranged from 24 to 89 years
(mean, 53 years).

The mammograms had been ac-
quired by using Mammography Quality
Standards Act (MQSA)-approved GE
DMR mammography units (GE Medical
Systems, Milwaukee, Wis) with Kodak
MR2000 (Kodak, Rochester, NY) screen
and film systems. All images were digi-
tized by using a LUMISYS 85 laser film
scanner (Lumisys, Mountain View, Calif)
with a pixel size of 0.05 � 0.05 mm and
4096 gray levels. The gray levels were
linearly proportional to the optical densi-
ties, from 0.1 to approximately 4.0 optical
density units. The nominal optical density
range of the scanner is 0–4, with large
pixel values corresponding to low optical
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density. Since the breast density pattern
does not have to be analyzed in high spa-
tial resolution (ie, pixel size of 0.05 mm or
less), the full-spatial-resolution mammo-
grams were first smoothed with a 16 � 16
box filter and subsampled by a factor of
16 to result in 0.8-mm pixel size images
that were approximately 256 � 256 pixels
in size for the analysis. This process re-
duced the processing time and image
noise. The technical details are described
elsewhere (23). However, a different
software version of the density program
was used for this study.

Mammogram Density Analysis with
MDEST
The computer first tracked the breast
boundary by using a gradient-based
edge-tracking algorithm, which has
been described previously (23). The
tracking of the boundaries of a given
breast started from approximately the
middle of the breast image and contin-
ued both upward and downward along
the boundary. The direction in which to
search for a new edge point was guided
by the previous edge points. The edge
location was determined by using a gra-
dient criterion along a band of pixels
perpendicular to the tracking direction.
The detected boundary separated the
breast from other background features,
including the directly exposed area, pa-
tient identification information, and
lead markers, which were excluded in
the subsequent analyses. Figure 1 shows
examples of the breast boundaries deter-
mined on typical CC- and MLO-view
mammograms. A separate edge-tracking
algorithm was used to detect the edge of
the pectoral muscle on the MLO-view
mammograms (Fig 1). The detected edge
usually is not very smooth owing to noise
on the image. A second-order polynomial
was fitted to the detected edge points to
segment the pectoral region. The pectoral
muscle on the MLO views was excluded
from the subsequent gray-level histogram
analyses and breast area calculations.

A dynamic range-compression meth-
od was used to reduce the gray-level
range of the histograms without affect-
ing the relative areas of the dense tissue
region and the entire breast region.
The histogram of the breast region on

thedynamic-range–compressedmammo-
gram was generated, normalized, and
smoothed. The histograms were analyzed
by the computer to formulate an auto-
matic thresholding routine.

After histogram classification, a
gray-level threshold was automatically
calculated to separate the fat and dense
glandular tissue regions. The gray-level
threshold depends on the shape (or
class) of the histogram. If the histogram
has a single peak, the maximum entropy
principle–based method (24) is used to
calculate the threshold. If the histogram
has more than one peak, the discrimi-
nant analysis method (25) is used. The
threshold is used to separate the pixels
in the breast region into two classes:
The class of pixel values above the
threshold corresponds to dense tissue,
and the class of pixel values below the
threshold corresponds to fat tissue.
This classification is represented on a
binary image (ie, segmented image), on
which dense pixels are represented by

white and fat pixels are represented by
black (Fig 2). The percent breast den-
sity is then calculated as the number of
pixels in the dense area divided by the
total number of pixels in the entire
breast region.

Mammogram Density Analysis Performed
by Readers
Seven MQSA-certified radiologists
(K.E.M., M.A.H., M.A.R., J.E.B., C.P.,
C.E.B., K.A.K.) independently evalu-
ated the data set. Five of these radiolo-
gists (K.E.M., M.A.H., M.A.R., J.E.B.,
C.P.) were involved in a prior study
(23). Before evaluation of the actual
data set, a set of 25 training cases was
used to familiarize five of the radiolo-
gists with the MDEST program and as-
sist them in the visual estimation of the
percentage of dense area on the mam-
mograms. Thus, five radiologists were
considered to be trained, and two were
not. The experience of the radiologists
in interpreting mammograms ranged

Figure 1

Figure 1: Mammogram from our image database superimposed with the detected breast boundary. (a) CC
view. (b) MLO view with anterior breast boundary and pectoral muscle boundary.
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from 1 to 25 years (median, 9 years;
mean, 10.4 years). The seven radiolo-
gists received their residency education
at six different institutions. Two were
educated at the same institution.

A graphical interface for displaying
and recording the radiologists’ evalua-
tions was developed. For a given breast,
the CC- and MLO-view mammograms

were first displayed side-by-side on a
high-spatial-resolution 22-inch Compaq
AlphaStation monitor (Compaq, Palo
Alto, Calif). This monitor has a display
matrix size of 1280 � 1024 pixels. It is
not Digital Imaging and Communica-
tions in Medicine calibrated, but it al-
lows one to adjust contrast and bright-
ness settings, and we adjusted these

at the beginning of the study according
to the subjective impressions of an ex-
perienced MQSA-certified radiologist
(M.A.H.). For each mammogram, the
radiologists were able to adjust the
window and level settings on the dis-
play screen.

Qualitative BI-RADS density classi-
fications.—The radiologist first assigned
each two-view mammogram to one of
the four conventional BI-RADS qualita-
tive density categories (eg, category 1,
indicating fat tissue). This BI-RADS
density assessment system does not in-
clude any quantitative classification used
in the new (fourth edition) American Col-
lege of Radiology BI-RADS (1), which was
not published at the time of the study.
Herein, the scores used in the new BI-
RADS classification system are referred
to as “qualitative BI-RADS categories.”

Quantitative estimate of density
percentage.—Next, the radiologist visu-
ally estimated the density percentage on
each mammogram by selecting one of
the 10% density ranges displayed on the
screen. Ten density percentage incre-
ments (eg, 1%–10%, 10%–20%) were
used because we believed that it would
be too difficult for the radiologists to
visually estimate density to the near-
est 1%.

Determination of reference-stan-
dard density.—After the subjective ra-
diologist evaluation, each view (CC or
MLO) was displayed sequentially. The
displayed material included the original
mammogram, the enhanced mammo-
gram, the histogram of the breast re-
gion in that view, and the corresponding
binary image created by thresholding
the histogram. The enhanced image was
generated by the MDEST program dur-
ing the density segmentation. This im-
age was basically a version of the origi-
nal mammogram with the contrast of
structures enhanced. The radiologist
was then able to manipulate the gray-
level threshold by interactively moving a
slider along the horizontal axis of the
histogram. The binary image changed
simultaneously with the chosen thresh-
old so that the radiologist could deter-
mine whether the segmented white area
corresponded to the dense white area
on the mammogram. The radiologist

Figure 2

Figure 2: Four representative CC mammograms with corresponding segmented images, density esti-
mates, and BI-RADS categories determined by trained radiologists. Note the difference between the quantita-
tive and qualitative BI-RADS categories. Although the two middle (second and third images from top) mam-
mograms have similar amounts of segmented breast density, the density percentage is greater in the smaller
breast owing to less fat tissue.
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was instructed to change the amount of
segmented dense area to resemble the
area that he or she would trace by hand
if he or she were performing manual
planimetry (11). When the radiologist
determined that the segmented area
was accurate, he or she clicked a button
to record the gray-level threshold and
density percentage for each image.
Since no reference standard exists for
breast density measurements, we used
this value—averaged for five radiolo-
gists previously trained with the training
cases—as the reference-standard den-
sity percentage for each view.

The radiologist was blinded to his or
her own estimated density percentage
value obtained and thus could not at-
tempt to match his or her density per-
centage estimate for the different views
or for different breasts of the same pa-
tient. The mammogram of the con-
tralateral breast of the same patient was
then displayed and evaluated in the
same way. The entire process was re-
peated for each patient until the imaging
data of all patients in the data set were
evaluated. We also recorded how long it
took the radiologists to complete their
evaluations of the mammograms.

During the training session for the
five radiologists, both the percentage of
dense area derived by the MDEST pro-
gram and that determined by using inter-
active thresholding were presented to the
radiologists so that they could compare
these two percentages with their visually
estimated density percentage for each im-
age. The percent dense areas derived by
using MDEST and interactive threshold-
ing were not displayed during the actual
study. To assess the effect of training, two
additional breast imaging radiologists,
who had not undergone training to visu-
ally estimate density percentage with the
25 training cases, evaluated the same set
of study images.

Statistical Analyses
Pearson correlation coefficients were
calculated to examine the associations
of the qualitative BI-RADS–, MDEST-,
and trained radiologist–estimated mam-
mographic densities with the true (ie, ref-
erence-standard) mammographic den-
sity. To assess the agreement between

the reference-standard density and both
the MDEST- and the trained radiologist–
estimated densities and to obtain 95%
limits of agreement, the method of Bland
and Altman was used (26). Interreader
agreement among the radiologists was
measured by using � statistics (27). The
strengths of agreement were expressed in
� values: A value of 0.20 or less indicated
poor; 0.21–0.40, fair; 0.41–0.60, moder-
ate; 0.61–0.80, good; and 0.81–1.00,
very good agreement. The significance of
differences in overestimations of density
between the trained and untrained radiol-

ogists was estimated by using the un-
paired t test. For the statistical calcula-
tions, the radiologists’ density percentage
estimates were expressed as the mean of
the 10% range (eg, for 1%–10%, 5% was
used). Software, including SAS (SAS In-
stitute, Cary, NC) and Microsoft Excel
(Redmond, Wash), was used to perform
all statistical analyses.

Results

We excluded 16 (6%) of the 260 mammo-
graphic views owing to technical prob-

Table 1

Descriptive Statistics for Breast Density on CC Views, Estimated by Seven
Radiologists

Datum* Mean Value† Minimal Value Maximal Value

Reader 1
BI-RADS category 2.38 � 0.85 1 4
MDEST density (%) 0.25 � 0.15 0.07 0.76
Radiologist density estimate (%) 0.30 � 0.25 0.05 0.85
Reference-standard density (%) 0.22 � 0.16 0.02 0.59

Reader 2
BI-RADS category 2.44 � 0.90 1 4
MDEST density (%) 0.25 � 0.15 0.07 0.76
Radiologist density estimate (%) 0.23 � 0.21 0.05 0.85
Reference-standard density (%) 0.23 � 0.18 0.02 0.67

Reader 3
BI-RADS category 2.65 � 0.88 1 4
MDEST density (%) 0.25 � 0.15 0.07 0.76
Radiologist density estimate (%) 0.27 � 0.19 0.05 0.65
Reference-standard density (%) 0.25 � 0.19 0.02 0.72

Reader 4
BI-RADS category 2.52 � 1.08 1 4
MDEST density (%) 0.25 � 0.15 0.07 0.76
Radiologist density estimate (%) 0.34 � 0.25 0.05 0.85
Reference-standard density (%) 0.27 � 0.20 0.01 0.72

Reader 5
BI-RADS category 2.52 � 1.02 1 4
MDEST density (%) 0.25 � 0.15 0.07 0.76
Radiologist density estimate (%) 0.31 � 0.26 0.05 0.85
Reference-standard density (%) 0.25 � 0.18 0.02 0.73

Reader 6
BI-RADS category 2.5 � 0.90 1 4
MDEST density (%) 0.25 � 0.15 0.07 0.76
Radiologist density estimate (%) 0.42 � 0.26 0.05 0.95

Reader 7
BI-RADS category 2.32 � 1.06 1 4
MDEST density (%) 0.25 � 0.15 0.07 0.76
Radiologist density estimate (%) 0.44 � 0.27 0.05 0.95

* Readers 1–5 were trained in using the MDEST method, and readers 6 and 7 were not. Radiologist estimates of breast density
were based on visual estimates of density percentage.
† Mean values � standard deviations.
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lems that were secondary to improper
breast boundary detection or the MDEST
program’s gross misclassification of the
gray-level histograms. The MDEST pro-
gram performed well in most cases. De-
scriptive statistics for the four methods of
evaluating mammographic density are
presented, according to radiologist and
view, in Tables 1 and 2.

Density Analyses
Pearson correlation coefficients for cor-
relations between the reference-stan-

dard density and the qualitative BI-
RADS–, MDEST-, and trained radiolo-
gist–estimated densities showed strong
positive linear relationships (Table 3).
These positive correlations indicate that
as the reference-standard density per-
centage increased, the values obtained
with the other methods also tended to
increase. Of these three estimated den-
sities, the trained radiologists’ estimates
had the highest correlation with the ref-
erence-standard density (R � 0.90), the
MDEST measurements had the second

highest correlation (R � 0.89), and the
qualitative BI-RADS categories had the
third highest correlation (R � 0.85).
The correlation of each method with the
reference-standard method was better
on the CC views than on the MLO views.
Correlation coefficients for agreement
between the CC and MLO views of the
same breast were 0.85 with MDEST;
0.96 with the reference-standard
method; and 0.94, 0.95, 0.94, 0.93, and
0.94 with the estimates of the five trained
radiologists.

Agreement of Reference-Standard Density
with MDEST- and Trained Radiologist–
estimated Densities
The method of Bland and Altman (26)
was used to assess agreement between
the reference-standard density and both
the MDEST- and the trained radiologist–
estimated densities. The mean overall
bias for the comparison between the
trained radiologists’ density estimates
and the reference-standard measurement
was an overestimation of 6%, compared
with an overestimation of 1% by the
MDEST program (Table 4). The 95% lim-
its of agreement between the trained
radiologist–estimated and reference-
standard densities were wider (�16%
to �27%), indicating greater error in
measuring density by using radiologist
estimates than by using MDEST. The
overall limits of agreement between the
reference-standard and MDEST densi-
ties ranged from �15% to �18%. The
MDEST program tended to overesti-
mate mammographic density (up to
�18%) more than it underestimated it
(up to �15%).

Untrained Radiologists
The densities estimated by the two un-
trained breast imagers had excellent
correlation with the reference-standard
measurement (R � .95). The untrained
radiologists overestimated the mammo-
graphic density percentage to a greater
extent than did the trained radiologists.
The untrained radiologists overesti-
mated density by 37% with respect to
the reference-standard density (Fig 3).
This was in contrast to the 6% overesti-
mation of the trained radiologists (P �
.001). There was no significant differ-

Table 2

Descriptive Statistics for Breast Density on MLO Views, Estimated by Seven
Radiologists

Datum* Mean Value† Minimal Value Maximal Value

Reader 1
BI-RADS category 2.37 � 0.87 1 4
MDEST density (%) 0.25 � 0.17 0.06 0.82
Radiologist density estimate (%) 0.31 � 0.26 0.05 0.95
Reference-standard density (%) 0.20 � 0.16 0.01 0.74

Reader 2
BI-RADS category 2.42 � 0.91 1 4
MDEST density (%) 0.25 � 0.17 0.06 0.82
Radiologist density estimate (%) 0.23 � 0.21 0.05 0.85
Reference-standard density (%) 0.22 � 0.17 0.03 0.77

Reader 3
BI-RADS category 2.65 � 0.87 1 4
MDEST density (%) 0.25 � 0.17 0.06 0.82
Radiologist density estimate (%) 0.27 � 0.19 0.05 0.75
Reference-standard density (%) 0.24 � 0.18 0.02 0.76

Reader 4
BI-RADS category 2.51 � 1.07 1 4
MDEST density (%) 0.25 � 0.17 0.06 0.82
Radiologist density estimate (%) 0.34 � 0.25 0.05 0.85
Reference-standard density (%) 0.26 � 0.2 0.01 0.82

Reader 5
BI-RADS category 2.52 � 1.03 1 4
MDEST density (%) 0.25 � 0.17 0.06 0.82
Radiologist density estimate (%) 0.31 � 0.26 0.05 0.85
Reference-standard density (%) 0.23 � 0.17 0.02 0.8

Reader 6
BI-RADS category 2.5 � 0.90 1 4
MDEST density (%) 0.25 � 0.17 0.06 0.82
Radiologist density estimate (%) 0.42 � 0.26 0.05 0.95

Reader 7
BI-RADS category 2.32 � 1.06 1 4
MDEST density (%) 0.25 � 0.17 0.06 0.82
Radiologist density estimate (%) 0.44 � 0.27 0.05 0.95

* Readers 1–5 were trained in using the MDEST method, and readers 6 and 7 were not. Radiologist estimates of breast density
were based on visual estimates of density percentage.
† Mean values � standard deviations.
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ence in the assignment of qualitative BI-
RADS density categories between the
trained and untrained radiologists (P �
.43).

Comparison with BI-RADS
A wide range of percent densities were
assigned to mammograms classified in
three of the four qualitative BI-RADS
categories (BI-RADS 2–4) (Table 5).
For example, qualitative BI-RADS cate-
gory 4 included mammograms with den-
sities of between 20% and 82%. There
was also a large range of qualitative BI-
RADS categories assigned to the same
range of percent densities. A mammo-
gram with 0%–24% density may have
been assigned to qualitative BI-RADS
category 1, 2, or 3 (Table 6) (Fig 2).

In Table 6, the new quantitative BI-
RADS density quartiles (0%–24%, 25%–
49%, 50%–74%, and 75%–100%) are
compared with the conventional qualita-
tive BI-RADS categories. The reference-
standard percent densities are grouped to
mimic the new quantitative BI-RADS
breast density quartiles. There was poor
agreement between the qualitative BI-
RADS density classifications and the new
quantitative BI-RADS density classifica-
tions, with use of the reference-standard
density as truth. If the new combined
qualitative and quantitative BI-RADS cat-
egory 4—indicating extremely dense
breast tissue—corresponded to greater
than 75% breast density, far fewer cases
would be classified as BI-RADS 4 com-
pared with the number of cases that
would be classified as qualitative BI-RADS
4. With use of the qualitative BI-RADS
system, 110 (17%) of the 650 cases (130
breasts times five radiologists equals 650
cases) in our study were assigned to cate-
gory 4. With use of the new quantitative
system, none of the 650 cases was as-
signed to category 4. With use of the old
qualitative BI-RADS system, 108 (17%)
of the 650 cases were classified as fatty
(category 1); with use of the new BI-
RADS quantitative system, 370 (57%)
cases were classified as fatty (category 1),
representing a downstaging of 40%.

Interobserver Agreement
The interobserver agreement values ob-
served for each density measurement

method indicate that there was strong
agreement among the trained radiolo-
gists. Intraclass correlation coefficients
were 0.88 for the radiologists’ estimates
of density percentage and 0.94 for the
radiologists’ determinations of the ref-
erence-standard density percentage, in-
dicating very good agreement among
the radiologists’ density measurements
obtained with these two methods. Pair-
wise comparison of the radiologists’ as-
signments of qualitative BI-RADS cate-
gories revealed good but lower agree-
ment, with � values (27) ranging from
0.61 to 0.76.

Time
The mean time to complete the quali-
tative BI-RADS density category as-
signments and density percentage es-
timations with the MDEST program
was 18 seconds per view (range,
13–22 seconds), with a mean standard

deviation of 8 seconds (range, 7–9 sec-
onds).

Discussion

Our study findings demonstrate that
quantified breast density is a more ac-
curate and reproducible measure of
breast density than radiologist esti-
mates derived by using the conventional
qualitative BI-RADS density categories.
In our study, we observed large ranges
of percent densities among cases classi-
fied in three of the four qualitative BI-
RADS density categories, with up to a
62% range in the category 4 cases. We
also observed a large overlap in the
mammographic density percentages as-
signed to cases classified in the four
qualitative BI-RADS categories by five
breast imaging specialists, with up to a
40% range overlap between categories
3 and 4. A mammogram with 30% total

Table 3

Correlation of Reference-Standard Breast Density with Qualitative BI-RADS
Categories, MDEST Density, and Trained Radiologists’ Density Estimates

Correlation Method
Density Estimate Correlated with Reference Standard

Qualitative BI-RADS MDEST Trained Radiologist Estimate

By view
CC 0.8682 0.9013 0.9124
MLO 0.8343 0.8880 0.8962

Overall 0.8509 0.8914 0.9035

Note.—Data are Pearson correlation coefficients.

Table 4

Mean Agreement between Density Measurement Methods

Correlation Method Mean Bias*
95% Limits of Agreement

Lower Upper

Reference-Standard versus MDEST Density

By view
CC �0.0036 � 0.0797 �0.1630 0.1558
MLO �0.0244 � 0.0824 �0.1892 0.1404

Overall �0.01384 � 0.0816 �0.1770 0.1494
Reference-Standard Density versus Trained Radiologists’ Estimates

By view
CC �0.0469 � 0.1029 �0.2527 0.1589
MLO �0.0634 � 0.1117 �0.2868 0.1600

Overall �0.0551 � 0.1076 �0.2703 0.1601

* Mean bias values � standard deviations.
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breast density could be assigned to qual-
itative BI-RADS category 2, 3, or 4;
however, under the new system, it
would be assigned to category 2.

Similar results were found in a com-
parison between the qualitative esti-
mates based on the Wolfe parenchymal
patterns and the quantitative determi-
nations of density made by using manual
planimetry (28). This is not surprising,
given the subjective nature of both the
qualitative BI-RADS density categories
and the Wolfe parenchymal patterns.
More recently, Wang et al (21) sug-
gested that the visual density percent-
age estimates derived by three mam-
mographers may have led to the same
mammogram being assigned to differ-
ent qualitative BI-RADS categories.
With use of quantitative percent breast
density determinations, one is more
likely to detect subtle changes in breast
density that may be masked when they

are classified in the same BI-RADS cate-
gory as the overall breast density.

Our results show that experienced
radiologists’ subjective density assess-
ments based on qualitative BI-RADS
categories may be quite different from
density assessments based on quantita-
tive BI-RADS categories. For example,
none of the 650 mammographic cases
judged to have qualitative category 4
density had greater than 75% breast
density according to quantitative BI-
RADS measures. In addition, the cases
with 0%–24% quantitative BI-RADS
category 1 (fatty) breast density would
have encompassed a majority (370

[57%] of 650) of the mammograms,
many of which were conventionally as-
signed to qualitative BI-RADS category
2 or 3.

A goal of the BI-RADS system is to
facilitate uniformity of physician re-
ports, and our results suggest that addi-
tional training would be necessary to
enable physicians to accurately trans-
late a visual assessment of density per-
centage into a quantitative assessment,
as recommended by the new BI-RADS
standards (1). In our study, the two un-
trained radiologists overestimated den-
sity by 37%. However, radiologists
could be rapidly trained to estimate
breast density by using a computerized
density measurement program so that
they could follow the new quantitative
BI-RADS density classifications. Fur-
thermore, use of the new quantitative
BI-RADS assessment may lead to the
“down coding” of breast density and
thus the creation of nonuniformity be-
tween the old and new standards and
the consequent hindering of longitudinal
research. A case previously assigned to
BI-RADS category 3 may now be as-
signed to BI-RADS category 1. Since
very few breasts have greater than 75%
density, the new quantified BI-RADS
may functionally approach a three-den-
sity-level system, with the majority of
mammographic cases assigned to cate-
gories 1 and 2.

The MDEST breast density determi-
nations were more accurate than the
radiologists’ visual estimates of breast
density, as indicated by the radiologists’
overestimating of breast density to a
greater degree and their larger varia-
tion in density estimates (relative to the
reference-standard density) compared
with the MDEST measurements. We
also observed good correlations be-
tween MDEST-derived density percent-
age and radiologist-determined refer-
ence-standard density percentage (R �
.89). Although this correlation was
slightly lower than that between the
trained radiologist–estimated and ref-
erence-standard densities (R � 0.90),
the MDEST-derived densities had tighter
agreement with the reference-standard
measurements than did the radiologists’
estimates. The MDEST program overesti-

Figure 3

Figure 3: Graph illustrates mammographic
density percentage visually estimated by two un-
trained radiologists versus reference-standard
density percentage. The untrained radiologists
significantly overestimated the percent breast
density relative to the reference-standard density
determined by the trained radiologists (P � .001).

Table 5

Range of Mammographic Density
Percentages Assigned to Qualitative
BI-RADS Categories by Trained
Radiologists

Qualitative BI-RADS
Category

Density Percentage
Range (%)

1 1–11
2 2–45
3 8–60
4 20–82

Table 6

Qualitative BI-RADS versus Quantitative Density Determinations

Quantitative Density
Percentage†

Qualitative BI-RADS Score*
1 2 3 4

0–24 17 (108/650) 29 (189/650) 11 (73/650) 0
25–49 0 3 (20/650) 21 (136/650) 6 (39/650)
50–74 0 0 2 (14/650) 11 (71/650)
75–100 0 0 0 0

* Data are percentages of cases with the given quantitative density percentage that were assigned the given BI-RADS score.
The numbers of cases used to calculate the percentages are in parentheses.
† The quantitative (ie, reference-standard) breast density ranges correspond to the new quantitative BI-RADS density
categories. Each breast (depicted on CC and MLO views) was assigned a single qualitative BI-RADS score by five trained
radiologists (130 breasts times five radiologists equals 650 cases).
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mated density by a mean of only 1%
(range, �15% to �18%), as compared
with a mean overestimation of density
of 6% by the trained radiologists (with a
wider range: �16% to �27%) relative
to the reference-standard density per-
centage.

Correlation coefficients for agree-
ment on density measurement between
the CC and MLO views favored the
trained radiologists, although both the
MDEST program and the radiologists
had good correlation. The MDEST pro-
gram performed better than the un-
trained radiologists in the estimation of
percent breast density. The two un-
trained breast imagers tended to over-
estimate density percentage by approx-
imately 37%, which was greater than
the percentage of overestimation by the
trained breast imagers. These findings
are in contrast to those of Lee-Han et al
(28): The single radiologist in their
study slightly underestimated the den-
sity percentage relative to the measured
area of density. This result may have
been secondary to some form of density
percentage estimation training received
by the radiologist, although this was not
specified.

Many of the computer programs
previously used to evaluate breast den-
sity have been only partially automated.
The density measurement methods
used by Byng et al (19) and Boone et al
(20) involved manual cropping of the
pectoral muscle to determine the breast
area on mammograms. In addition, the
Byng et al method involved manual de-
terminations of both breast edge and
breast density gray-level thresholds.
With the Byng et al method, it took less
than a minute to evaluate each image
(19). Our fully automated program au-
tomatically detects the breast edge,
crops the pectoral muscle, and esti-
mates the gray-level threshold for den-
sity segmentation. In addition, if manual
interactive thresholding (the reference-
standard method used in the current
study) is preferred, the MDEST user
interface is fast and simple to use, re-
quiring an average of 18 seconds per
view to evaluate both the BI-RADS cat-
egory–based density and the density
percentage. Investigators in two other

studies (10,21) have described fully auto-
mated programs for determining breast
density.

We found that percent breast den-
sity determinations were more accurate
on CC views than on MLO views. This
was true for both the MDEST densities
and the radiologist visual density esti-
mates. The MDEST program overesti-
mated density percentage by a mean of
2.4% on the MLO views and by a mean
of 0.4% on the CC views. The radiolo-
gists overestimated density by a mean
of 6.3% on the MLO views and by a
mean of 4.7% on the CC views. These
data suggest that in the future, CC views
alone may be adequate for assessing
percent breast density in temporal mea-
surements.

There were several limitations to
our study. The MDEST program had
technical errors, which led to a 6% case
rejection rate. Technical errors in-
cluded inaccurate breast border detec-
tion and gross misclassification of the
gray-scale histograms. Errors in both
the anterior breast border detection al-
gorithm and the pectoral muscle detec-
tion algorithm occurred and resulted in
inaccurate breast tissue area determi-
nations. Misclassification of the gray-
scale histograms resulted in improper
gray-level threshold determination, in-
accurate segmentation of the dense ar-
eas, and inaccurate density percentage
calculations. These histogram misclassi-
fication errors occurred more often on
the mammograms with extremely dense
and fatty pixels. Thus, MDEST cannot
yet be used as a stand-alone density
measurement method. Although further
development of computer visualization
techniques and additional training with
a large data set are needed to improve
the accuracy and robustness of MDEST,
the results of this study demonstrate the
feasibility of our approach and the
promise of using an automated or semi-
automatic system like MDEST to aid fu-
ture research efforts in the investigation
of mammographic breast density.

Another limitation of our study was
that the BI-RADS qualitative assess-
ments were subjective and could be in-
stitutionally defined. Six (86%) of the
seven radiologists received residency

training at different institutions, so
strong institutional bias was less likely
in this study. Also, there is no reference
standard for determining breast den-
sity, so there will always be some sub-
jective difference in determining mam-
mographic density, even when manual
segmentation is used. The averaging of
five radiologists’ segmentations may
have partially reduced this bias.

Our MDEST program calculates the
area of mammographic breast density,
which correlates with the area of fi-
broglandular tissue that is present.
However, volume is a more accurate
measure of the amount of breast tissue
than is area. Accurate determination of
the dense tissue volume requires sensi-
tometry and scatter and beam-harden-
ing corrections for each mammogram.
A rough estimate of dense tissue volume
could be determined by multiplying the
breast thickness, which is recorded for
each mammogram at our institution, by
the area of dense tissue. Wang et al (21)
described a computer-aided detection
method that is more accurate for esti-
mating dense mammographic tissue
composition because it involves the use
of a tissue-thickness-correction algo-
rithm. This concept of breast tissue vol-
ume may be of importance in the study
of breast cancer risk, because it is prob-
ably the volume of dense glandular
breast tissue—rather than the density
of breast tissue—that determines risk
(9). Wei et al (22) recently observed a
high correlation between our auto-
mated mammographic MDEST assess-
ment method and volumetric fibroglan-
dular tissue estimation at breast mag-
netic resonance imaging, suggesting
that estimates of change in mammo-
graphic density are close surrogates for
change in volumetric density. Further
investigation is needed to determine
whether rough estimates of dense tissue
volume can improve the correlation be-
tween breast density and breast cancer
risk.

In conclusion, the MDEST-derived
densities compared favorably to radiol-
ogist estimates of percent breast density
and were more reproducible than radi-
ologist estimates of the conventional
qualitative BI-RADS density categories.
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Qualitative and quantitative BI-RADS
density assessments differed markedly.
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Abstract. Studies have demonstrated a strong correlation between 
mammographic breast density and breast cancer risk.  Mammographic breast 
density may therefore be used as a surrogate marker for monitoring the response 
to treatment in studies of breast cancer prevention or intervention methods.  In 
this study, we evaluated the accuracy of using mammograms for estimating 
breast density by analyzing the correlation between the percent mammographic 
dense area and the percent glandular tissue volume as estimated from MR 
images.  A data set of 37 patients who had corresponding MR images and 
mammograms was collected.  The glandular tissue regions in the MR slices 
were segmented by a semi-automatic method and the percent glandular tissue 
volume calculated.  Mammographic breast density was estimated by an 
automated image analysis program.  It was found that the correlation between 
the percent dense area of the CC and MLO views and the percent volumetric 
fibroglandular tissue on MR images was 0.93 and 0.91, respectively, with a 
mean bias of 4.4%. The high correlation indicates the usefulness of 
mammographic density as a surrogate for breast density estimation.   

1.  Introduction 

Previous studies have shown that there is a strong positive correlation between 
breast parenchymal density on mammograms and breast cancer risk [1-3]. The 
relative risk is estimated to be about 4 to 6 times higher for women whose 
mammograms have parenchymal densities over 60% of the breast area, as compared 
to women with less than 5% of parenchymal densities. The change in mammographic 
breast density is therefore often used as an indicator for monitoring the effects of 
preventive or interventional treatment of breast cancer.   

Breast cancer risk is expected to depend on the volume of glandular tissue in the 
breast.  Mammographic density is a projection of the volume of glandular tissue onto 
the two-dimensional image plane. To better understand the correlation between 
mammographic density and breast cancer risk, it is important to investigate the 
relationship between the projected areal density on mammograms and the volume of 
glandular tissue in the breast.  In this study, we investigate this relationship by 
analyzing the percent volumetric glandular tissue in magnetic resonance (MR) images 
and the percent dense area in corresponding mammograms for the same breasts.   
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2.  Materials and Methods 

Our data set consisted of corresponding MR breast images and mammograms from 
37 patients acquired between detection and biopsy.  The MR image series used in this 
study, which included coronal 3D T1-weighted pre-contrast images (coronal sections 
2-5 mm thick, 32 slices; 3D Spoiled Gradient-Recalled Echo (SPGR); TE=3.3ms; 
TR=10ms, Flip=40o, matrix=256x128, FOV=28-32cm right/left, 14-16cm 
superior/inferior, scan time=2 min 38 sec) was part of a dynamic breast MRI study.  
This 3D SPGR sequence produced full volume coverage of both breasts with 
contiguous image slices.  An example of images from one breast is shown in Fig. 1. 
Although this is not the optimal pulse sequence for separating water and fat, the 
fibroglandular parenchyma (~water) and fatty tissue are well separated with this 
heavily T1-weighted acquisition and therefore the series was chosen for this study.   

 

 
Fig. 1.  MR images of the right breast of a patient.  The two-view mammogram of the 

same breast is shown in Fig. 2. 
 
We have developed a graphical user interface that displays the MR series and the 

corresponding mammogram of each breast.  The interface allows the user to perform 
a combination of manual and automatic operations to segment the MR images.  Each 
MR slice is first thresholded to separate the breast from the surrounding region.  For 
slices close to the chest wall where no clear boundary can be seen, the boundary is 
manually drawn and evaluated by radiologists.  Background correction [4] using the 
voxel values around the segmented breast region is employed to correct for the non-
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uniformity across the breast area due to the breast coil.  The histogram of the voxel 
values in the breast region is then formed and interactive thresholding is used to 
segment the fibroglandular tissue from the fatty tissue.  A morphological erosion 
operation along the breast boundary then excludes the skin voxels from the 
calculation of the fibroglandular tissue area in each slice.  Finally, an integration of 
the fibroglandular voxels in all slices relative to the breast volume provides the 
percent volumetric fibroglandular tissue in the breast. 

We have previously developed an automated image analysis tool (Mammographic 
Density ESTimator) to assist radiologists in estimating mammographic breast density 
[5].  MDEST performs dynamic range compression, breast boundary tracking, 
pectoral muscle segmentation for the MLO view, automatic thresholding based on 
gray level histogram analysis, and calculates the percent dense area on a 
mammogram.  We found that the correlation between the computer-estimated percent 
dense area and radiologists’ manual segmentation was 0.94 and 0.91, respectively, for 
CC and MLO views, with a mean bias of less than 2%.  An example of a 
mammogram segmented by MDEST is shown in Fig. 2. 
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Fig. 2.  Automated breast density segmentation from mammograms.  Upper row: CC view.  

Lower row: MLO view. 

3.  Results 

Scatter plots of the percent volumetric fibroglandular tissue versus the percent 
dense area on mammograms are shown in Fig. 3(a) and 3(b) for the CC- and MLO-
view mammograms, respectively. The correlation of percent dense area of the CC and 
MLO views with the percent volumetric fibroglandular tissue on MR images was 
found to be 0.93 and 0.91, respectively, with a mean bias of 4.4%. 



284 

% Area-CC View
0 10 20 30 40 50 60

%
 V

ol
um

e-
M

R
I

0

10

20

30

40

50

60

 % Area-MLO View
0 10 20 30 40 50 60

%
 V

ol
um

e-
M

R
I

0

10

20

30

40

50

60

 
Fig. 3.  Correlation of % volumetric fibroglandular tissue on MR images with % dense area on 

mammograms for 37 patients. The left and right breasts are plotted as separate data 
points on each graph.  The dash lines are linear least squares fits to the data points. 

4.  Conclusion 

Mammographic density is highly correlated with the volumetric fibroglandular 
tissue in the breast, indicating its usefulness as a surrogate for breast density 
estimation. The computerized image analysis tool, MDEST, is useful for estimation of 
mammographic density.  The automated analysis is expected to contribute to the 
understanding of the relationship of mammographic density to breast cancer risk, 
detection, and prognosis, and to the prevention and treatment of breast cancer. 
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Abstract. Studies have demonstrated a strong correlation between 
mammographic breast density and breast cancer risk. We have 
previously developed a computerized system, mammographic density 
estimator (MDEST), to estimate breast density automatically on 
digitized film mammograms (DFM). In this study, we evaluated the 
performance of the MDEST system on full field digital mammograms 
(FFDM) and DFMs. The input to the system is a preprocessed dynamic 
range compressed image. The breast region is first segmented by breast 
boundary detection. The pectoral muscle is trimmed if it is an MLO 
view. A rule-based classifier is then used to classify the breast image 
into one of four classes according to the characteristics of its gray level 
histogram. The dense area from the breast region is subsequently 
segmented by automatic gray level thresholding. The breast density is 
estimated as the percentage of the segmented dense area relative to the 
breast area. In this study, two-view FFDM and the corresponding DFM 
from 99 patients with 202 images in each set were used. The dense area 
on each mammogram was segmented by 4 radiologists using interactive 
thresholding and their average was used as the “gold standard”. The 
MDEST system was directly applied to the FFDM and DFM data 
without any re-training except that the preprocessing filter was modified 
for FFDMs. We found that the correlation between the estimated percent 
dense area and the gold standard was 0.850 and 0.873 on FFDM, and 
0.885 and 0.824 on DFM, for CC and MLO views, respectively. The 
results demonstrated the feasibility of estimating breast density 
automatically on FFDM and DFM using the same MDEST system.  

1. Introduction 

Studies have demonstrated a strong correlation between breast density on mammograms and 
breast cancer risk (Saftlas and Szklo 1987; Brisson et al. 1989; Saftlas et al. 1991; Oza and 
Boyd 1993; Boyd et al. 1998; Yaffe et al. 1998). The relative risk is estimated to be about 4 
to 6 times higher for women whose mammograms have parenchymal densities over 60% of 
the breast area, as compared to women with less than 5% of parenchymal densities. The 
strong correlation between breast density and breast cancer risk has prompted researchers to 
use mammographic density as an indicator for monitoring the effects of preventive or 
interventional treatment of breast cancer.  

Because of the subjective nature of visual analysis, qualitative estimation may vary 
from radiologist to radiologist. A computerized method for measuring mammographic 
density would be useful as a supplement to the radiologist’s assessment. We have previously 
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developed a computerized system, mammographic density estimator (MDEST) (Zhou et al. 
2001), to estimate breast density automatically on digitized film mammograms (DFM). The 
MDEST system performs dynamic range compression, breast boundary tracking, pectoral 
muscle trimming for MLO view, gray level thresholding based on histogram analysis, and 
calculation of the percent dense area on the mammogram. In the previous study, 260 digitized 
4-view mammograms of 65 patients were used. The gold standard of percent dense area of 
the breast region for each mammogram was obtained by averaging five radiologists’ 
manually segmented percent dense area. We found that the correlation between the computer-
estimated percent dense area and radiologists’ manual segmentation was 0.94 and 0.91, with 
RMS errors at 6.1% and 7.2%, respectively, for CC and MLO views. 

In this study, we investigate the feasibility of computerized mammogramic density 
estimation on FFDMs and DFMs using the same image segmentation system. The MDEST 
system was directly applied to the FFDM and the corresponding DFM without any re-training 
except that the preprocessing filter was modified for FFDMs. The performance was evaluated 
by analyzing the correlation between the computer-estimated mammographic density and the 
gold standard obtained by radiologists’ interactive thresholding. 

2. Materials and Methods 

The data sets consisting of FFDM and the corresponding DFM of 99 patients with 202 
images in each set were used. Each case contains the craniocaudal (CC) view and the 
mediolateral oblique (MLO) view. The FFDM was acquired with a GE Senographe 2000D 
system and the raw GE FFDM was processed by a Laplacian pyramid multi-resolution 
preprocessing method (Wei et al. 2004). The preprocessed image was downsized to a pixel 
size of 800 µm x 800 µm image and 4096 gray levels. The DFM was acquired with 
mammography systems approved by the Mammography Quality Standards Act (MQSA) and 
was digitized with a LUMISYS 85 laser film scanner with a pixel size of 50 µm x 50 µm and 
4096 gray levels. The digitized mammogram was also downsized to a 800 µm x 800 µm 
image using a 16x16 box filter. 

Our previously developed computerized system MDEST was applied to the FFDMs 
and DFMs to estimate the mammographic density without any re-training. The density 
estimation was performed in three stages: breast region segmentation, image enhancement, 
and gray level thresholding based on histogram analysis . First, the breast region was 
segmented from the surrounding background by an automated breast boundary tracking 
algorithm for DFM. For FFDM, thresholding was used to separate the breast region from the 
background. Since our current pectoral muscle trimming program is not 100% accurate, the 
pectoral muscle was manually trimmed on the MLO view images for both DFM and FFDM 
in this study in order to separate the errors due to breast density segmentation from those due 
to pectoral muscle trimming. Second, an adaptive dynamic range compression technique was 
applied to enhance the DFM image. For FFDM image, a Laplacian pyramid multi-resolution 
preprocessing method (Wei et al. 2004) was used for image enhancement. At the third stage, 
for both FFDM and DFM, rule-based classification was used to classify the breast image into 
one of four classes according to the characteristic features of its gray level histogram (Zhou et 
al. 2001). For each image in the classified classes, a gray level threshold was determined 
adaptively to segment the dense area from the breast region. The breast density was estimated 
as the percentage of the segmented dense area relative to the breast area. As an example, 
typical mammograms in the four classes with the corresponding enhanced images, 
histograms, selected thresholds and the segmented image are shown in Figure 1. To evaluate 
the performance of MDEST, the computer segmentation results were compared to those by 
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manual segmentation with interactive thresholding by four MQSA radiologists. The “gold 
standard” of percent dense area for each mammogram was obtained by averaging the 
manually segmented percent dense areas of the four radiologists. 

3.  Results 

Figures 2(a)-(d) show the comparison of the percent dense area between the estimation by the 
MDEST system and the gold standard on FFDM and DFM for CC- and MLO-view 
mammograms, respectively. Table 1 summarizes the comparison between the MDEST 
performance and the gold standard for FFDM and DFM, respectively. The correlation 
between the computer-estimated percent dense area and the gold standard is 0.850 and 0.873  
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Figure 1.  Typical mammograms in the four density classes and the corresponding enhanced 

and segmented images, histograms and thresholds. The columns from left to right 
correspond to the original image, enhanced image, segmented image and the 
histogram. Rows from top to bottom correspond to class one to four. 
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Figure 2. Comparison of the percent dense area between the estimation by the 
MDEST system and the gold standard. The dashed line represents the 
linear regression of the data on the plot. (a) FFDM CC view, (b) FFDM 
MLO view, (c) DFM CC view, (d) DFM MLO view. 

 
 
Table I. The correlation and RMS difference between the estimated percent 
dense area by the MDEST system and the gold standard (average of four 
MQSA radiologists). 

FFDM DFM 
Image subsets Correlation RMS Error Correlation RMS Error 

CC view 0.850 7.26% 0.885 6.87% 

MLO view 0.873 5.70% 0.824 8.16% 

All images 0.859 6.52% 0.855 7.54% 
 
on FFDM, and 0.885 and 0.824 on DFM, for CC and MLO views, respectively. For all of the 
images combining CC- and MLO-views, the correlation is 0.859 and 0.855 on FFDM and 
DFM, respectively. The RMS difference in the percent dense area between the MDEST 
estimation and the gold standard is 7.26%, 5.70% and 6.52% on FFDM, and 6.87%, 8.16% 
and 7.54% on DFM for CC-view alone, MLO-view alone, and combined CC and MLO-
views, respectively.  
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4.  Conclusion 
Our preliminary study demonstrated that the estimation of mammographic density could be 
performed efficiently by the automated image analysis tool. The computer-estimated percent 
dense area had a high correlation with the gold standard obtained from averaging four MQSA 
radiologists’ manual segmentation. The results also demonstrated the feasibility of estimating 
breast density automatically on FFDM and DFM using the same MDEST system. Further 
study will be conducted to improve the breast density segmentation accuracy.  
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ABSTRACT 
 

Automatic identification of the pectoral muscle on MLO view is an essential step for computerized analysis of 
mammograms. It can reduce the bias of mammographic density estimation, will enable region-specific processing in 
lesion detection programs, and also may be used as a reference in image registration algorithms. We are developing a 
computerized method for the identification of pectoral muscle on mammograms. The upper portion of the pectoral 
edges was first detected to estimate the direction of the pectoral muscle boundary. A gradient-based directional (GD) 
filter was used to enhance the linear texture structures, and then a gradient-based texture analysis was designed to 
extract a texture orientation image that represented the dominant texture orientation at each pixel. The texture 
orientation image was enhanced by a second GD filter. An edge flow propagation method was developed to extract 
edges around the pectoral boundary using geometric features and anatomic constraints. The pectoral boundary was 
finally generated by a second-order curve fitting. 118 MLO view mammograms were used in this study. The pectoral 
muscle boundary identified on each image by an experienced radiologist was used as the gold standard. The accuracy of 
pectoral boundary detection was evaluated by two performance metrics. One is the overlap percentage between the 
computer-identified area and the gold standard, and the other is the root-mean-square (RMS) distance between the 
computer and manually identified pectoral boundary. For 118 MLO view mammograms, 99.2% (117/118) of the 
pectoral muscles could be identified. The average of the overlap percentage is 94.8% with a standard deviation of 
20.9%, and the average of the RMS distance is 4.3 mm with a standard deviation of 5.9 mm. These results indicate that 
the pectoral muscle on mammograms can be detected accurately by our automated method.  
 
Keywords: Computer-aided detection, Pectoral muscle trimming, Breast density estimation, Directional gradient filter 
 
 

1. INTRODUCTION 
 
Breast cancer is one of the leading causes of cancer mortality among women1, 2. At present, the most successful method 
for the early detection of breast cancer is screening mammography3. It has been demonstrated that an effective 
computer-aided diagnosis (CAD) system can provide a second opinion to the radiologists and improve the accuracy of 
detection and characterization of mammographic abnormalities, which, in turn, may reduce unnecessary biopsies. 
Studies have shown that there is a strong positive correlation between breast parenchymal density on mammograms and 
breast cancer risk.1, 4-6 The relative risk is estimated to be about 4-6 times higher for women whose mammograms have 
parenchymal densities over 60% of the breast area, as compared to women with less than 5% of parenchymal densities. 
Mammograms are analyzed visually by radiologists, the qualitative response may vary from radiologist to radiologist 
due to the subjective nature of visual analysis. We have previously developed a computerized system, mammographic 
density estimator (MDEST), to estimate breast density automatically on digitized film mammograms.7 For each 
mammogram, the breast region was first segmented by breast boundary detection and, for the mediolateral oblique 
(MLO) view, with additional pectoral muscle trimming. A gray level threshold was then automatically determined to 
segment the dense tissue from the breast region. The breast density was estimated as the percentage of the segmented 
dense area relative to the breast area. Our preliminary study indicated that the computer-estimated mammographic 
breast density correlated closely with the “reference standard” obtained by averaging five experienced radiologists’ 
manual segmentations and the average bias was much less than that of the radiologists’ visual estimation.  
 
Automatic identification of the pectoral muscle is an essential step for computerized analysis of mammograms. 
Accurate segmentation of the pectoral muscle on MLO-view mammograms can reduce the bias of mammographic 
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density estimation and improve the performance of our MDEST method. It will enable region-specific processing in 
lesion detection programs to reduce false negatives. False positives can be reduced if the detected objects in the pectoral 
muscle area can be selectively suppressed. The identification of the pectoral muscle may also be used as a reference in 
image registration algorithm for multiple-view analysis of mammograms. 
 
In our preliminary study 7, the pectoral muscle was trimmed using a gradient-based pectoral edge detection method: the 
initial edge in the pectoral region was first found as the maximum gradient point by a line-by-line gradient analysis from 
the chest wall to the breast boundary. An edge validation process was then performed to remove the false pectoral 
muscle edges using a line fitting method, and a coarse direction of the pectoral edges was estimated from the validated 
edges. The remaining pectoral edges were extrapolated along the estimated pectoral direction. Finally, a second order 
curve was fitted to the detected pectoral edges to generate the pectoral boundary. Using the above method, 74.6% of the 
pectoral muscles were determined by visual judgment to be correctly identified in this preliminary study.  
 
The purpose of this study is to improve the performance of our previously developed pectoral muscle segmentation 
method. Accurate identification of the pectoral muscle on mammograms is challenging, especially for the improperly 
positioned MLO-view images and the images containing dense glandular tissues overlapping with the pectoral muscle 
region. In this work, we developed a two-stage gradient-based texture analysis method to detect the pectoral boundary. 
In the first stage, linear texture structures were enhanced and the directional gradients were computed using a 
directional filter. In the second stage, a texture orientation image was derived as the dominant texture orientation at each 
pixel. A diffusion filter was used to estimate the global direction of the pectoral boundary. An edge flow propagation 
method was developed to extract the pectoral edges with the guidance of the estimated global direction. 
 

2. MATERIALS AND METHODS 
 
2.1 Materials 
 
In this study, 118 MLO-view mammograms from 103 patients were randomly selected from the patient files in the 
Radiology Department at the University of Michigan. Data collection was approved by the Institutional Review Board 
and individual patient informed consent was waived. The mammograms were acquired with Mammography Quality 
Standards Act (MQSA) approved GE DMR (Milwaukee, Wisconsin) mammography units using Kodak MR2000 
screen/film systems. All films were digitized with a LUMISYS 85 laser film scanner with a pixel size of 50 µm×50 µm 
and 4096 gray levels. The resolution of the mammograms was reduced to 800 µm × 800 µm for segmentation of the 
pectoral muscle.  
 
2.2 Pectoral muscle identification 
 
Figure 1 summarizes the automatic pectoral muscle identification scheme. The interference due to overlapping of the 
glandular tissue on the pectoral muscle region is first reduced by smoothing the mammogram using an edge preserving 
anisotropic diffusion filter 8. Because less glandular tissue appears at the upper region of the pectoral muscle, the upper 
portion of the pectoral boundary usually remains sharp after smoothing and can be detected robustly by searching the 
maximum horizontal gradients on the diffused image. The extrapolation of the detected upper pectoral boundary 
provides a coarse global direction of the pectoral boundary. To refine the entire pectoral boundary, a gradient-based 
directional (GD) filter was first employed to enhance the linear texture structures on the mammogram. The orientation 
of the digitized image could be automatically determined by the curvature of the breast boundary. For example, if the 
image was positioned such that the chest wall was on the right side, it could be assumed that the pectoral boundary is at 
a direction approximately from the top-left to the bottom-right with less than 45 degree deviation. Therefore, in our 
study, the kernel of the GD filter was designed as a step function with 45 degree orientation. After the pectoral edge was 
enhanced by the GD filter, a gradient-based texture analysis9 was used to compute an orientation image which 
represented the dominant texture orientation at each pixel. The orientation image was smoothed using an edge 
preserving mean shift algorithm10 that iteratively shifted each pixel to the average of the pixels in its neighborhood. The 
texture patterns with dominant texture orientations directing from the top-left to the bottom-right, which were more 
likely to be the pectoral edges, were enhanced by applying a second GD filter to the smoothed orientation image. 
Candidate edges of the pectoral muscle were detected on the enhanced orientation image using a ridge-tracking 
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algorithm. The ridges were tracked by searching for the local maximum along the coarse global direction estimated, as 
described above, by the upper pectoral boundary on the anisotropic diffused image. With the guidance of the estimated 
global direction of the pectoral boundary and the anatomical constraints, an edge flow propagation algorithm was then 
used to extract the boundary points of the pectoral muscle by pruning the edges that are less likely to lie on the pectoral 
boundary. A second order curve fitting was finally used to generate the pectoral muscle boundary. Figure 2 shows 
examples of the intermediate images of pectoral boundary enhancement and edge tracking corresponding to the various 
stages shown in the flowchart in Figure 1. 
  

3. RESULTS 
 
 An experienced MQSA-radiologist used a graphical user interface to manually draw the pectoral muscle boundary on 
each MLO-view mammogram, which was then used as the gold standard for the evaluation of the performance of our 
pectoral muscle detection program. 
 
For each MLO view mammogram, the accuracy of pectoral boundary detection was evaluated by two performance 
metrics: the percentage of overlap, defined as the ratio of the overlap area between the computer detected pectoral 
muscle area and the gold standard relative to the gold standard, and the root-mean-square (RMS) distance obtained by 
calculating the shortest distance point by point between the computer-identified pectoral boundary and the manually 
marked pectoral boundary. For the data set of 118 MLO view mammograms, 99.2% (117/118) of the pectoral muscles 
could be identified, the average of the percent overlap area is 94.8% with a standard deviation of 20.9%, the average of 
the RMS distance is 4.3 mm with a standard deviation of 5.9 mm.  

 
Figure 3 shows some examples of pectoral boundary identification on mammograms. The computer identified pectoral 
boundaries were shown in white lines and the dark lines show the radiologist’s hand drawn boundaries. Figure 3 (a)-(b) 
show the pectoral boundary can be identified accurately on mammograms with weak pectoral edges (figure 3(a) ) and a 
large area of dense tissues overlapping on the pectoral muscle area (shown in figure 3(b) ). Figure 3(c)-(d) show two 
examples of less accurate pectoral boundaries detected by the computer. Figure 3(e) shows the only case in this data set 
that the computer failed to detect the boundary. 

 
4. CONCLUSION 

 
The newly developed gradient-based directional filter and the dominant texture orientation estimation method can 
enhance the pectoral boundary regions. The edge flow propagation method can accurately extract pectoral edges to 
generate the pectoral boundary. Automatic pectoral muscle identification will provide the foundation for many 
mammographic image analysis tasks in CAD applications.  
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Figure 1. Automated pectoral muscle detection scheme 
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(a) (b) (c) 

   
(d) (e) (f) 

  

 

(g) (h)  
Figure 2. Example of boundary enhancement and segmentation of pectoral muscle. (a) original image; (b) texture 

orientation image after first GD filter and texture-flow analysis; (c) ridge image enhanced by the 2nd 
GD filter; (d) tracked ridges; (e) smoothed image using anisotropic diffusion filter; (f) initial pectoral 
edges detected from the smoothed image in (e) for the estimation of the coarse direction of the pectoral 
boundary; (g) propagated pectoral edges on the ridge image (c) with the guidance of the coarse 
direction estimated from the smoothed image shown in (f); (h) the final identified pectoral boundary 
after 2nd order curve fitting.  
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                (e)  
 
Figure 3. Examples of pectoral boundary segmentation on mammograms. (a)-(b): accurate identification of 

pectoral boundary; (c)-(d): less accurate identification of pectoral boundary; (e) the only 
mammogram in our data set that the computer failed to identify the pectoral muscle due to the 
small portion of the pectoral muscle area within the breast region.  
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Breast Density Estimation: Correlation of Mammographic Density and MR 
Volumetric Density 

 
Chan HP, Hadjiiski LM, Roubidoux MA, Helvie MA, Paquerault S, Sahiner B, 

Chenevert T, Goodsitt MM 
 
Studies have demonstrated a strong correlation between mammographic breast 
density and breast cancer risk.  Mammographic breast density may therefore be used 
as a surrogate marker for monitoring the response to treatment in studies of breast 
cancer prevention or intervention methods.  In this study, we evaluated the accuracy 
of using mammograms for estimating breast density by analyzing the correlation 
between the mammographic areal density and the glandular tissue volume as 
estimated from MRI. 
 
A data set of fifty patients who had corresponding MR images and mammograms was 
collected. The coronal MR images provided full volume coverage of both breasts with 
contiguous image sections. Heavily T1-weighted acquisition was used which 
produced images with well-separated dense parenchyma and adipose tissue.  The 
glandular tissue regions in the MR sections were outlined interactively by 
experienced radiologists with a graphical user interface and the percent glandular 
tissue volume calculated.  Mammographic density was estimated with an automated 
image analysis program and compared to that provided by manual segmentation.  The 
computer algorithm included dynamic range compression, breast boundary tracking, 
and automatic thresholding based on analysis of the gray level histogram.  The dense 
tissue regions on the mammogram were then segmented and the percent dense area 
estimated.   
 
The correlation between the computer-estimated percent dense area and radiologists’ 
manual segmentation of mammographic density was found to range from 0.91 to 0.94 
in an independent set of mammograms.  The analysis of the relationship between 
mammographic percent dense area and MR percent glandular tissue volume is 
underway.  We will discuss the correlation of the breast fibroglandular-to-adipose 
ratios estimated from these two approaches. 
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Mammographic breast density, an indicator of the proportion of fibroglandular vs. fatty 
tissue in the breast, has been found to have strong correlation with breast cancer risk.  
Mammographic breast density has therefore been used for monitoring the response in 
studies of preventive or interventional treatment of breast cancer.  Breast density changes 
during the course of treatment are often estimated visually on mammograms by 
radiologists; which involves large inter- and intraobserver variations.  The goal of this 
project is to develop an automated image analysis method that can provide a more 
consistent and reproducible estimate of the percent dense breast area on a mammogram.   
 
An automated computer program has been developed that performs breast density analysis 
using the following steps: detection of the breast boundary, reduction of the image dynamic 
range, analysis and classification of the shape of the gray level histogram, adaptive gray 
level thresholding, and estimation of the percent dense tissue area relative to the breast area. 
The performance of the algorithm was evaluated by comparing the computer segmentation 
results to manual segmentation with interactive thresholding by five radiologists. 
 
To further investigate the relationship between the mammographic breast density and the 
amount of fibroglandular tissue in the breast, the image analysis program was applied to the 
mammograms of 37 patients who had corresponding magnetic resonance (MR) images of 
the breasts. The fibroglandular tissue regions in the MR slices were segmented interactively 
with a user interface, and the percentage of fibroglandular tissue volume in the breast 
estimated.  The correlation between the percent dense area estimated from mammograms 
and the percent volumetric fibroglandular tissue estimated from MR images was studied. 
 
We found that the correlation between the computer-estimated percent dense area and the 
average of the five radiologists’ manual segmentation was 0.94 and 0.91, respectively, for 
CC and MLO views, with a mean bias of less than 2%. The percent breast dense area of the 
CC and MLO views has a correlation of 0.92 and 0.91, respectively, with the percent 
volumetric fibroglandular tissue on MR images.  Mammographic density is therefore highly 
correlated with the volumetric fibroglandular tissue in the breast, indicating its usefulness as 
a surrogate for breast density estimation. 
 
The computerized image analysis tool is useful for breast density estimation on 
mammograms.  The automated analysis is expected to contribute to the understanding of the 
relationship of mammographic density to breast cancer risk, detection, and prognosis, and to 
the prevention and treatment of breast cancer. 
 

The U.S. Army Medical Research Materiel Command under DAMD17-01-1-0326 
supported this work. 
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Breast Density Estimation on Mammograms and MR Images: A Tool for Assessment 

of Breast Cancer Risk 
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Berkman Sahiner, Marilyn A. Roubidoux, Chuan Zhou, Sophie Paquerault,  

Thomas Chenevert, Mitchell M. Goodsitt 
 
PURPOSE:  Previous studies have found that mammographic breast density is highly 
correlated with breast cancer risk.  We have developed a computerized image analysis tool, 
Mammography Density ESTimator (MDEST), to estimate the percent dense area on 
mammograms.  In this study, we analyzed the correlation between mammographic percent 
dense area and percent volumetric fibroglandular tissue on MR images. 
 
METHOD AND MATERIALS:  For the estimation of mammographic breast density, 
MDEST performs the following procedures: detection of the breast boundary, reduction of 
the image dynamic range, analysis and classification of the gray level histogram, adaptive 
gray level thresholding, and estimation of the percent dense tissue area relative to the 
breast area. The performance of MDEST was validated by comparing its segmentation to 
that with manual interactive thresholding by five radiologists in 260 mammograms.  For 
the estimation of the percent volume of fibroglandular tissue in breast MR images, a semi-
automatic method has been developed to segment the fibroglandular tissue from each slice.  
First, the breast boundary is detected automatically. A deformable model and manual 
modification are used to correct for incorrectly detected boundaries that usually occur in 
slices near the chest wall where the breast boundary is not well-defined.  Because of the 
nonuniformity of the breast coil, the signal intensity in the breast region is not uniform 
across the field of view.  A background correction technique that estimates the low 
frequency background from the gray levels along the breast boundary is developed to 
reduce the nonuniformity.  Finally, manual interactive thresholding of the gray level 
histogram in the breast region is used to separate the fibroglandular from the fatty region. 
The tissue volume is calculated by integration over all slices containing the breast. A data 
set of 54 cases having MR images and corresponding 4-view mammograms was used in 
this study. The MR images were coronal 3D SPGR T1-weighted pre-contrast images.  
 
RESULTS:  The percent volume of fibroglandular tissue had a correlation of 0.92 and 
0.91 with the percent dense area obtained on CC-view and MLO-view mammograms, 
respectively. The percent mammographic dense area slightly overestimates the percent 
volume with a mean bias of 3%.  
 
CONCLUSIONS:  Mammographic density is highly correlated with the volumetric 
fibroglandular tissue in the breast, indicating its usefulness as a surrogate for breast 
density estimation and thus for monitoring breast cancer risk. 
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Comparison of mammographic density estimated on digital mammograms and screen-film 
mammograms 

 
Heang-Ping Chan, Jun Wei, Chuan Zhou, Mark A. Helvie, Marilyn Roubidoux, Janet Bailey, 

Lubomir Hadjiiski, Berkman Sahiner 
 

PURPOSE: To compare breast density estimated on pairs of digital mammogram (DM) and screen-
film mammogram (SFM) obtained from the same patients. 

METHODS AND MATERIALS: We are comparing image information on DMs and SFMs for 
radiologist’s interpretation and computerized image analysis.  One hundred forty-five pairs of DM 
and SFM (76 CC views and 69 MLO views) were collected with IRB approval from 68 patients.  
The time interval between the DM and SFM ranged from 0 to 118 days (median=21 days).  The 
SFMs were acquired with GE DMR systems and the DMs were acquired with a GE Senographe 
2000D system.  Both the DMs and the SFMs were acquired with automated exposure techniques 
that selected the appropriate target, filter, and kVp.  The SFMs were digitized with a laser film 
scanner.  The breast boundaries on the DMs and SFMs were detected automatically by the 
computer.  The mammograms were displayed on a workstation with a graphical user interface that 
allowed interactive thresholding of the gray level histograms to segment the dense region from the 
fatty region.  The DMs and SFMs were segmented independently in separate sessions so that the 
observer could not compare the density of the corresponding DM and SFM.  Hard copies of the 
displayed images were available for reference during segmentation. The mammographic density 
was estimated as the percent dense area relative to the breast area, excluding the pectoral muscle in 
the MLO views. 

RESULTS: The correlation between the mammographic density on SFM and DM was 0.94 and 
0.92, the root-mean-square residual was 4.5% and 4.6%, and the average ratio of mammographic 
density estimated on SFM to that on DM of the same breast was 1.18 and 1.22, respectively, for CC 
and MLO views. The differences in the percent dense area between the DM and SFM were 
statistically significant (paired t test: p<0.0000001) for both views. The DMs used harder beams 
(Mo/Mo 4.5%, Mo/Rh 22.4%, Rh/Rh 73.1%) while the SFMs used softer beams (Mo/Mo 44.2%, 
Mo/Rh 48.1%, Rh/Rh 7.8%).  The peak potential used for DM was 1 to 5 kVp higher than that for 
SFM in 84% of cases. 

CONCLUSION:  Breast density on DMs generally appears to be lower than that on SFMs because 
of the harder beam quality used and image processing applied to the DMs.  The lower density may 
improve the mammographic sensitivity for lesion detection on dense breasts.  However, for patients 
with SFMs and DMs taken over time, comparison of serial mammograms for breast density 
changes will be problematic.  



A5 
Computerized mammographic breast density estimation: Expectation-Maximization estimation and neural 

network classification of breast density 
 

Chuan Zhou, Lubomir M.Hadjiiski, Berkman Sahiner, Heang-Ping Chan, Mark A. Helvie, Jun Wei 
 
PURPOSE: 
Our previous study showed the feasibility of a rule-based automatic breast density estimation method. However, the 
rule-based technique could not classify the very fatty and very dense breasts consistently with high accuracy because 
some of these breasts have very similar gray level histograms. This study develops a new neural network classifier to 
improve the performance of rule-based breast density estimation. 
 
MATHOD & MATERIALS: 
A mammogram is digitized and the pixel size is reduced to 0.8 mm. The breast region is first segmented by an 
automatic boundary tracking and a pectoral muscle trimming algorithm. An adaptive dynamic range reduction 
technique is used to reduce the range of the gray levels in the low frequency background and to enhance the separation 
of the gray levels of the dense and fatty regions. The breast images are first classified by a rule-based method into a 
class of median dense and a class of combined very dense/fatty breasts based on the characteristics of their gray level 
histograms. An Expectation-Maximization (EM) algorithm is then applied to the latter class to extract the gray level 
features. One morphological feature and 12 EM extracted gray level features are input to a feedforward neural network 
to further classify the mammograms in the combined class into a class of very dense breasts and a class of very fatty 
breasts. For each class, a gray level threshold is automatically estimated to segment the dense tissue. For comparison, 
an experienced radiologist provided a manually segmented percent dense area by interactive thresholding. 
 
RESULT: 
In this preliminary study, 498 mammograms from 141 patients were used and 243 were classified into the very 
dense/fatty combined class by the rule-based classifier. With a jackknife method, this class was randomly partitioned 
into four non-overlapping groups. In each jackknife cycle, three groups were used for training and one group for 
testing. The overall accuracy for classification of the four test groups into very dense and very fatty breasts reached 
99.6% by the neural network,  and 84.8% could be reached by our previous rule-based classifier.  
 
CONCLUSION 
The results demonstrate the feasibility of training a neural network classifier for the classification of very dense and 
fatty breasts. The neural network can be trained very well using the morphological feature and the features extracted by 
the EM algorithm. Combining the rule-based method with the NN classifier, the two-stage classification improved the 
performance of our previous breast density estimation technique.  



A6 
Performance evaluation of an automated breast density estimation system  

for digital mammograms and digitized film mammograms 
 

Zhou C, Chan HP, Wei J, Helvie MA, Roubidoux MA, Paramagul C, Nees A, Hadjiiski 
LM, Sahiner B 

 
Studies have demonstrated a strong correlation between mammographic breast density 
and breast cancer risk. We have previously developed a computerized system, 
mammographic density estimator (MDEST), to estimate breast density automatically on 
digitized film mammograms (DFM). In this study, we evaluated the performance of the 
MDEST system on full field digital mammograms (FFDM) and DFMs.  The input to the 
system is a preprocessed dynamic range compressed image, the breast region is first 
segmented by breast boundary detection.  The pectoral muscle is trimmed if it is an MLO 
view. A rule-based classifier is then used to classify the breast image into one of four 
classes according to the characteristics of its gray level histogram. A gray level threshold 
is determined to segment the dense area from the breast region. The breast density is 
estimated as the percentage of the segmented dense area relative to the breast area. In this 
study, two-view FFDM and the corresponding DFM from 99 patients with 202 images in 
each set were used. The dense area on each mammogram was segmented by 4 
radiologists using interactive thresholding and their average was used as the “ground 
truth.”  The MDEST system was directly applied to the FFDM and DFM data without 
any re-training except that the preprocessing filter was modified for FFDMs. We found 
that the correlation between the estimated percent dense area and the truth was 0.846 
(0.813, 0.862) and 0.855 (0.808, 0.861) on FFDM, and 0.880 (0.867, 0.858) and 0.765 
(0.766, 0.739) on DFM, for CC and MLO views, respectively. The results demonstrated 
the feasibility of estimating breast density automatically on FFDM and DFM using the 
same MDEST system. 
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Computerized pectoral muscle identification on MLO-view mammograms  

for CAD applications 
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 (Department of Radiology, The University of Michigan, Ann Arbor, MI 48109-0904) 
 
SUMMARY: Automatic identification of the pectoral muscle on MLO view is an essential step for 
computerized analysis of mammograms. It can reduce the bias of mammographic density estimation, 
will enable region-specific processing in lesion detection programs, and also may be used as a 
reference in image registration algorithms. We are developing a computerized method for the 
identification of pectoral muscle on mammograms. 
 
The upper portion of the pectoral edges was first detected to estimate the direction of the pectoral 
muscle boundary. A gradient-based directional bandpass (GDB) filter was used to enhance the linear 
texture structures, and then a gradient-based texture analysis is designed to extract a texture orientation 
image that represented the dominant texture orientation at each pixel. The texture orientation image 
was enhanced by a second GDB filter. An edge flow propagation method was developed to extract 
edges around the pectoral boundary using geometric features and anatomic constraints. The pectoral 
boundary was finally generated by a second-order curve fitting. 118 MLO view mammograms were 
tested in this study. The pectoral muscle boundary identified on each image by an experienced 
radiologist was used as the gold standard.  
 
The accuracy of pectoral boundary detection was evaluated by two performance metrics. One is the 
overlap percentage between the computer-identified area and the gold standard, and the other is the 
root-mean-square (RMS) distance between the computer and manually identified pectoral boundary. 
For 118 MLO view mammograms, 99.15% (117/118) of the pectoral muscles could be identified. The 
average of the overlap percentage is 85.9% with a standard deviation of 14.0%, and the average of the 
RMS distance is 4.31 mm with a standard deviation of 5.94 mm. These results indicate that the 
pectoral muscle on mammograms can be detected accurately by our automated method.  
 
 
 
 
 
 



Computerized pectoral muscle identification on MLO-view mammograms  
for CAD applications 
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PURPOSE: The pectoral muscle is imaged in most of the medial-lateral oblique (MLO) view 
mammograms. Automatic identification of the pectoral muscle is an essential step for computerized 
analysis of mammograms. It can reduce the bias of mammographic density estimation, will enable 
region-specific processing in lesion detection programs, and also may be used as a reference in image 
registration algorithms. The goal of this study is to develop an automated method to identify the 
pectoral muscle on mammograms. 
 
METHOD & MATERIALS:  Because of noise and the overlapping structures, the pectoral boundary 
is usually detected as pieces of edges mixed with a large number of false edges. The pieces of edges 
have to be pruned and linked to obtain a continuous boundary. We are developing a pectoral boundary 
detection algorithm based on gradient-based texture orientation analysis. The interference due to 
overlapping of the glandular tissue on the pectoral muscle region is first reduced by blurring the 
mammogram using an edge preserving anisotropic diffusion filter. Because less glandular tissue 
appears at the upper region of the pectoral muscle, the upper portion of the pectoral boundary usually 
remains sharp after blurring and can be detected robustly by searching the maximum horizontal 
gradients on the diffused image. The extrapolation of the detected upper pectoral boundary provides a 
coarse global direction of the pectoral boundary. To explore and refine the entire pectoral boundary, a 
gradient-based directional bandpass (GDB) filter is first employed to enhance the linear texture 
structures on the mammogram. A gradient-based texture analysis is then used to compute an 
orientation image which represents the dominant texture orientation at each pixel. The orientation 
image is smoothed using an edge preserving mean shift algorithm that iteratively shifts each pixel to 
the average of the pixels in its neighborhood. A second GDB filter is applied to the smoothed 
orientation image to enhance the texture patterns that have high similarity in the dominant texture 
orientations. Candidate edges of the pectoral muscle are detected on the enhanced orientation image 
using a ridge-tracking algorithm. With the guidance of the estimated global direction of the pectoral 
boundary and the anatomical constraints, an edge flow propagation algorithm is used to extract the 
boundary points of the pectoral muscle by pruning the edges that are less likely to lie on the pectoral 
boundary. A second order curve fitting is used to generate the final pectoral muscle boundary. 118 
MLO view mammograms from 103 patients were randomly selected for the evaluation of the 
algorithm in this study. The mammograms were digitized with 0.05 mm/pixel resolution and reduced 
to a resolution of 0.8 mm/pixel for pectoral muscle identification. An experienced radiologist used a 
graphical user interface to manually draw the pectoral muscle boundary on each mammogram, which 
was then used to define the pectoral muscle region and used as the gold standard for the evaluation of 
computer performance.  
  
RESULTS: For each MLO view mammogram, the accuracy of pectoral boundary detection was 
evaluated by two performance metrics: the percentage of computer detected pectoral muscle area 
overlapped with the gold standard, and the root-mean-square (RMS) distance between the computer-
identified pectoral boundary and the manually marked pectoral boundary. For 118 MLO view 
mammograms, 99.15% (117/118) of the pectoral muscles could be identified, the average of the 
percent overlap area is 85.9% with a standard deviation of 14.0%, the average of the RMS distance is 
4.31 mm with a standard deviation of 5.94 mm.  



 
NEW WORK TO BE PRESENTED: Accurate identification of the pectoral muscle on 
mammograms is challenging, especially for the improperly positioned MLO-view images and the 
images containing dense glandular tissues overlapping with the pectoral muscle region. In this work, 
we developed a two-stage gradient-based texture analysis method to detect the pectoral boundary. In 
the first stage, linear texture structures were enhanced and the directional gradients were computed 
using a directional bandpass filter. In the second stage, a texture orientation image was derived as the 
dominant texture orientation at each pixel. A diffusion filter was used to estimate the global direction 
of the pectoral boundary. An edge flow propagation method was developed to extract the pectoral 
edges with the guidance of the estimated global direction. 
 
CONCLUSION: The newly developed gradient-based directional filter and the dominant texture 
orientation image estimation method can enhance the pectoral boundary regions. The edge flow 
propagation method can accurately extract pectoral edges to generate the pectoral boundary. Automatic 
pectoral muscle identification will provide the foundation for many image analysis tasks in CAD 
applications.  
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PURPOSE: 
We have previously developed an automatic mammographic density estimator (MDEST) on digitized film 
mammograms (DFM). In this study, we modified MDEST to estimate breast density on full field digital mammograms 
(FFDM) and further improved the performance of the MDEST on DFM. 
 
METHOD & MATERIALS: 
The breast region is first extracted by breast boundary detection. The pectoral muscle is trimmed if it is an MLO view. 
An adaptive dynamic range reduction technique is used to reduce the gray level range in the low frequency 
background. The breast image is classified into one of four classes ranging from fatty to very dense based on the 
characteristics of their gray level histograms. For each class, an Expectation-Maximization (EM) algorithm is 
developed to extract gray level features and a rule-based classifier is trained to segment the dense regions from the fatty 
background. The parameters of the new rule-based method are trained separately for FFDMs and DFMs. The breast 
density is estimated as the percentage of the segmented dense area relative to the breast area. Two-view FFDMs and the 
corresponding DFMs from 99 patients with 202 images in each set were used as the test set. The computerized 
segmentation on the two sets of mammograms is compared to the “gold standard”, which is obtained from interactive 
thresholding segmentation averaged over 4 MQSA radiologists for each mammogram. 
 
RESULT: 
For FFDM, the correlation between the computer estimated percent dense area and the gold standard was 0.94 for CC 
view, 0.92 for MLO view, and 0.96 for each breast with the percent dense area estimated as the average of two views. 
The corresponding root-mean-square (RMS) error was 4.2%, 4.4%, and 3.5%, respectively. For DFM, the 
corresponding correlations were 0.88, 0.86 and 0.92 with RMS error of 7.0%, 7.1% and 5.7%, respectively. 
 
CONCLUSION 
The results demonstrate the feasibility of estimating breast density automatically on FFDMs and DFMs using the same 
MDEST system by only incorporating a new EM estimation step. The adaptability of the new EM method improved 
the robustness of our breast density estimation technique for mammograms acquired with different imaging systems. 
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